Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

651.

State whether the given statement is true false:(i) If A ⊂ B and x∉B than x ∉A.(ii) If A ⊆ϕ then A = ϕ(iii) If A, B and C are three sets such than A ϵ B and B ⊂ C then A ⊂ C.(iv) If A, B and C are three sets such than A ⊂B and B ϵ C then A ϵC.(v) If A, B and C are three sets such that A ⊄B and B ⊄C then A ⊄C.(vi) If A and B are sets such that x A and A ϵ B then x ϵ B.

Answer»

(i) True 

Explanation: We have A ⊂ B since A is a subset of B then all elements of A should be in B. 

Let A = {1,2} and B = {1,2,3} 

Let x=4∉B 

Also we observe that 4∉A. 

Hence, If A ⊂ B and x∉B than x ∉A. 

(ii) True

Explanation: We have, A ⊆ ϕ

Now, A is a subset of null set , this implies A is also an empty set.

⇒ A =ϕ 

(iii) False 

Explanation: Let A = {a}, B = {{a}, b}

here , A ϵ B

Now, let C = {{a}, b, c}. 

Since, {a},b is in B and also in C thus, B ⊂ C. 

But, A ={a} and {a} is an element of C, since the element of a set cannot be a subset of a set. 

Hence,A ⊄ C. 

(iv) False

Explanation: Let A = {a},B = {a, b} and C = {{a, b}, c}. 

Then,A⊂ B and B ϵC. But, A ∉ C since {a} is not an element of C. 

(v) False. 

Explanation: Let A = {a}, B = {b, c} and C = {a, c}. 

Since a ∈ A and a ∉ B.Then, A ⊄ B 

Now, b ∈ B and b ∉ C ⇒ B ⊄C. 

But, A ⊂ C since, a ∈ A and a ∈ C. 

(vi) False. 

Explanation: Let A = {x}, B = {{x}, y} 

Now, x ϵ A and {x} is an element of B ⇒ A ϵ B 

But, x is not an element of B. Thus, x∉B.

652.

Write the following sets.1) Set of the first five positive integers.2) Set of multiples of 5 which are more than 100 and less than 125.3) Set of first five cubic numbers.4) Set of digits in the Ramanujan number.

Answer»

1) {11, 2, 3, 4, 5}

2) {105, 110, 115, 120}

3) {13, 23, 33, 43, 53

{1, 8, 27, 64, 125}

4) Ramanujan’s number is 1729 

{1, 2, 7, 9}

653.

Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:(i) 1 ∈ A(ii) {1, 2, 3} ⊂ A(iii) {6, 7, 8} ∈ A(iv) {4, 5} ⊂ A(v) ϕ ∈ A(vi) ϕ ⊂ A

Answer»

(i) False

Since, 1 is not an element of A.

(ii) True

Hence, {1,2,3} ∈ A this is correct form.

(iii) True.

Hence, {6, 7, 8} ∈ A.

(iv) True

Since, {{4, 5}} is a subset of A.

(v) False

Since, Φ is a subset of A, not an element of A.

(vi) True

Hence, Φ is a subset of every set, therefore it is a subset of A.

654.

Which of the following statements are correct? Write a correct form of each of the incorrect statements. (i) a ⊂ {a,b,c} (ii) {a} {a,b,c} (iii) a {{a},b} (iv) {a} ⊂ {{a},b} (v) {b,c} ⊂ {a,{b,c}} (vi) {a,b} ⊂ {a,{b,c}} (vii) ϕ {a,b} (viii) ϕ ⊂ {a,b,c} (ix) {x:x + 3 = 3}= ϕ

Answer»

(i) In this a isn’t subset of given set but belongs to the given set. 

∴ The correct form would be 

a ϵ {a,b,c} 

(ii) In this {a} is subset of {a,b,c} 

∴ The correct form would be 

{a} ⊂ {a,b,c} 

(iii) In this a is not the element of the set. 

∴ The correct form would be 

{a} ϵ {{a},b} 

(iv) In this {a} is not athe subset of given set 

∴ The correct form would be 

{a} ϵ {{a},b} 

(v) {b,c} is not a subset of given set. But it belongs to the given set. 

∴ The correct form would be 

{b,c} ϵ {a,{b,c}} 

(vi) {a,b} is not a subset of given set 

∴ The correct form would be 

{a,b} {a,{b,c}} 

(vii) ϕ does not belong to given set but it is subset 

∴ The correct form would be 

ϕ ⊂ {a,b} 

(viii) True ϕ is subset of every set 

(ix) X + 3 = 3 

X = 0 

{0} 

It is not ϕ 

∴ The correct form would be 

{x:x + 3 = 3} = {0}

655.

State whether the following statements are true or false: (i) 1 { 1,2,3} (ii) a ⊂ {b,c,a} (iii) {a} {a,b,c} (iv) {a,b} = {a,a,b,b,a} (v) The set {x:x + 8 = 8} is the null set.

Answer»

(i) True 

1 belongs to the given set as it is present in it. 

(ii) False 

{a} ⊂ {b,c,a} 

This is the write form to write it or a ϵ {b,c,a} 

(iii) False 

{a} ⊂ {b,c,a} 

This is the write form to write it or a ϵ {b,c,a} 

(iv) True 

We do not repeat same elements in a given set. 

∴ The given set can be written as {a,b} 

(v) False 

X+8 = 8 

i.e. x = 0 

{0} It is not a null set

656.

If A and B are two sets, then prove that the sets A - B, B - A and `A cap B` are mutually disjoint.

Answer» `A - B={x:x in A and x in B}`
`B-A={x:x in B and x in A}`
` : A- B and B -A` are mutually disjoint
Now, `x in A - B rArr x in A and x in B`
`rArr x cancel(in) A cap B`
`:. A- B and A cap B` are mutually disjoint.
Similarly, we can prove that `B - A adn A cap B` are mutually disjoint
Therefore, `A - B, B-A and A cap B` are mutually disjoint sets.
657.

If `A={1,2,3,4},B={2,3,4,5} and C={4,5,6,7}`, then find each of the following : (i) `A - (B-C)` (ii) `(A- B) -C`.

Answer» (i) `(B -C)={2,3}`
`:. A-(B-C) = {1,4}`
(ii) `(A- B)={1}`
`:. (A-B)-C = {1}`
658.

Let `A= {a, b, c,d} and B ={b,d,f,g}`. Find `A Delta B`.

Answer» We have,
`(A-B)= {a,b,c,d}-{b,d,f, g } ={a,c}`.
`(B-A)={b,d,f ,g} -{a,b,c,d } = {f,g}`.
`therefore A Delta B = (A-B)cup (B-A)={a,c}cup {f,g}={a,c,f,g}`.
659.

State whether any given set is finite or infinite:K = {x : x ϵ N and x is prime}.

Answer»

The given set is the set of all prime numbers and since the set of prime numbers is infinite. Hence, the given set is infinite.

660.

State in each case whether A ⊂ B or A ⊄ B. A = {x : x is a real number,}, B = {x : x is a complex number}

Answer»

A ⊂ B 

Explanation: we have, A = set of real numbers and B = set of complex numbers, a combination of the real and imaginary number in the form of a+ib, where a and b are real, and i is imaginary. 

Since, any real number can be expressed as complex number, A ⊂ B.

661.

State in each case whether A ⊂ B or A ⊄ B. A = {x : x is an integer}, B = {x: x is a rational number}

Answer»

A = {….-2, -1, 0, 1, 2, 3….} 

B = {-∞, ……..0, ……∞ } 

A ⊂ B as integers are contained in rational numbers.

662.

If R is the set of real numbers and Q is the set of rational numbers, then what is `R Q`?

Answer» Correct Answer - `(R-Q)={x:x in R, x "is irrational "} `
663.

If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle POR is (are) always rational point(s) ?

Answer» `C=((x_1+x_2+x_3)/3,(y_1+y_1+y_3)/3)`
C is rational
`m_(AB),m_(BC),m(CA) in `Rational
H must be rational.
D,E,F are rational
`(x_1+x_2)/2,(y_1+y_2)/2`
Co-ordinate O must be rational
`tantheta=7`
Option A,C,D are rational.
664.

Write all the possible subsets of A = {5, 6}

Answer»

The all the possible subsets of A are: 

ϕ, {5}, {6}, {5,6}

665.

If A = {1, 3, 5}, how many elements has P(A)Or Find the number of elements in power set of A = {a, b, c}

Answer»

Number of elements in power set of A = 2n 

= 23 = 8 

here, n = 3 

Or 

The number of elements in power set of A = {a,b,c} [n(A) = 3]

666.

If A = {Rectangles}, B = {Rhombuses}, then A ∪ B = A) {Rhombuses} B) {Rectangles} C) {Squares} D) {Triangles}

Answer»

Correct option is B) {Rectangles}

667.

If A = set of letters of the word ‘DELHI’ and B = the set of letters the word ‘DOLL’ find(i)  A ∪ B(ii)  A ∩ B(iii)  A – B

Answer»

Here, A = {D, E, H, I, L} and B = {D, L, O}

(i)  A ∪ B = {D, E, H, I, L} and B ⋃ {D, L, O} 

= {D, E, H, I, L, O}

(ii)  A ∩ B {D, E, H, I, L} ∩ B ⋃ {D, L, O} 

= {D, L}

(iii)  A – B = {D, E, H, I, L} − {D, L, O} 

= {E, H, I}

668.

A is a set . Which of the following is false?A) A ∩ A = A B) A ∪ A = A C) A ∩ Φ = A D) A ∪ Φ = A

Answer»

Correct option is C) A ∩ Φ = A

669.

Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {2, 4, 6, 8} and B = {2, 3, 5, 7}. Verify that: (A ∪ B)’ = A’ ∩ B’

Answer»

A ∪ B = {x: x ϵ A or x ϵ B} 

= {2, 3, 4, 5, 6, 7, 8} 

(A∪B)’ means Complement of (A∪B) with respect to universal set U. 

So, 

(A∪B)’ = U – (A∪B)’ 

U – ( A∪B)’ is defined as {x ϵ U : x ∉ (A∪B)’} 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

(A∪B)’ = {2, 3, 4, 5, 6, 7, 8} 

U – ( A∪B)’ = {1, 9} 

Now 

A’ means Complement of A with respect to universal set U. 

So, 

A’ = U – A 

U – A is defined as {x ϵ U : x ∉ A} 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

A = {2, 4, 6, 8} 

A’ = {1, 3, 5, 7, 9} 

B’ means Complement of B with respect to universal set U. 

So, 

B’ = U – B 

U – B is defined as {x ϵ U : x ∉ B} 

U = {1, 2, 3, 4, 5, 6, 7, 8, 9} 

B = {2, 3, 5, 7}. 

B’ = {1, 4, 6, 8, 9} 

A’ ∩ B’ = = {x:x ϵ A’ and x ϵ C’}. 

= {1, 9} 

Hence verified.

670.

Write down all subsets of each of the following sets: `(i) A= {a}` `(ii) B={a,b}` `(iii) C={-2,3}` `(iv)D={-1,0,1}` `(v)E=phi` `(vi) F={2,{3}}` `(vii) G={3,4,{5,6}}`

Answer» Correct Answer - (i) `phi,{a}`
(ii) ` phi, {a}, {b}, {a,b}`
(iii) `phi, {-2} , {3}, {-2,3}`
(iv) `phi, {-1,}, {0}, {1}, {-1,0}, {0,1},{-1,1} {-1,0,1}`
(v) `phi`
(vi) `phi, {2}, {{3}}, {2{3}}`
(vii) ` phi, {3}, {4}, {{5,6}}, {3,4} , {3, {5,6}}, {4,{5,6}}, {3,4,{5,6}}`
671.

Prove that A ∩ (A∪B)’ = ϕ

Answer»

LHS = A ∩ (A∪B)’ 

Using De-Morgan’s law (A∪B)’ = (A’ ∩ B’) 

⇒ LHS = A ∩ (A’ ∩ B’) 

⇒ LHS = (A ∩ A’) ∩ (A ∩ B’) 

We know that A ∩ A’ = ϕ 

⇒ LHS = ϕ ∩ (A ∩ B’) 

We know that intersection of null set with any set is null set only

Let (A ∩ B’) be any set X hence 

⇒ LHS = ϕ ∩ X 

⇒ LHS = ϕ 

⇒ LHS = RHS 

Hence proved

672.

A survey of 500 television viewers produced the following information;285 watch football, 195 watch hockey, 115 watch basketball, 45 watch football and basketball, 70 watch football and hockey, 50 watch hockey and basketball, 50 do not watch any of the three games. How many watch all the three games? How many watch exactly one of the three games?

Answer»

Let , 

Total number of People n(P) = 500. 

People who watch Basketball n(B) =115. 

People who watch Football n(F) = 285. 

People who watch Hockey n(H) = 195. 

People who watch Basketball and Hockey n(B ∩ H) = 50 

People who watch Football and Hockey n(H ∩ F) = 70 

People who watch Basketball and Football n(B ∩ F) = 45 

People who do not watch any games. n(H∪B∪F)= 50 

Now, 

n(H∪B∪F)’ = n(P) – n(H∪B∪F) 

50 = 500–( n(H)+n(B)+n(F) – n (H ∩ B)– n (H ∩ F)– n (B ∩ F)+ n (H ∩B ∩ F)) 

50 = 500–(285+195+115–70–50–45 +n (H ∩B ∩ F)) 

50 = 500–430 + n (H ∩B ∩ F)) 

n (H ∩B ∩ F) = 70–50 n 

(H ∩B ∩ F)) = 20 

∴ 20 People watch all three games. 

Number of people who only watch football 

= 285–(50+20+25) 

= 285–95 

= 190. 

Number of people who only watch Hockey 

= 195–(50+20+30) 

= 195–100 

= 95. 

Number of people who only watch Basketball 

= 115–(25+20+30) 

= 115–75 

= 40. 

Number of people who watch exactly one of the three games 

As the sets are pairwise disjoint we can write 

= number of people who watch either football only or hockey only or Basketball only 

=190+95+40 

=325 

∴ 325 people watch exactly one of the three games.

673.

If A = {2, 3, 4, 5}, B = {3, 4, 5}, C – {2, 5} then which of the following is null set? A) B ∩ C B) A – B C) (B ∩ C) – A D) B – C

Answer»

Correct option is C) (B ∩ C) – A

674.

An object of a set is called A) element B) subject C) number D) alphabet

Answer»

Correct option is A) element

675.

{x: x ∈ N, x lies between 5 and 12} = A) {5, 6, ……………. 12} B) {6, 8, 10} C) {5, 12} D) {6, 7, 8, 9, 10, 11}

Answer»

Correct option is D) {6, 7, 8, 9, 10, 11}

676.

Empty set isA) Not exist B) Unique C) Infinite D) Unique if it exists

Answer»

Correct option is B) Unique

677.

If `A={3,4,5, 6} and B={4,6,8,10}`, find `A cup B`.

Answer» Clearly , `A cup B= {3,4,5,6,8,10}`.
678.

The number of tangents that can be drawn from the point `(8,6)` to the circle `x^2+y^2-100=0` is

Answer» Since (8,6) lies on the circle `x^2+y^2-100=0`
`8^2+6^2-100=64+36-100=100-100=0`
There is only one tangent drawn from point(8,6) on the given circle.
679.

Let ` A ={x:x ` is a prime number less than `10}` and ` B={x:x in N, x "is a" ` factor of `12}`. Find `A cup B`.

Answer» We have ,
` A={2,3,5,7} and {1,2,3,4,6,12}`.
`therefore A cup B ={ 2, 3,5,7 } cup {1,2,3,4,6, 12} ={1,2,3,4 ,5,6,7,12}`.
680.

Find the sum of n terms of series ` 2.4 + 6.8 + 10.12+.....`

Answer» when a=2,d=4
`a_n`=2+(n-1)4=4n-2
When a=4,d=4
`a_n`=4+(n-1)4=4n
`T_n=(4n-2)(4n)=8[2n^2-n)`
`S_n=sumT_n=sum16n^2-8n`
`(16n(n+1)(2n+1))/6-(8n(n+1))/2`
`(8*n(n+1))/2[(2(2n+1))/3-1]`
`4n(n+1)[(4n+2-3)/3]=(4n(n+1)(4n-1))/3`.
681.

If ` 1/ sqrt(alpha) and 1/sqrt(beta)` are the roots of equation `a x^2 + bx + 1 = 0`(`a!=0, (a,b in R)`), then the equation `x(x + b^3) + (a^3 - 3abx) = 0` has roots -

Answer» eqn is `ax^2 + bx +1 =0`
so,roots will be `1/sqrt alpha & 1/sqrt beta`
can be written in the form `1/sqrt alpha + 1/sqrt beta = -b/a`
`(sqrt alpha + sqrt beta)/(sqrt alpha * sqrt beta)= -b/a`
`=1/sqrt(alpha beta) = 1/a`
now, `x(x+b^3) + (a^3 - 3abx) = 0`
`x^2 + b^3x - 3abx+a^3 = 0`
`x^2 + x(b^3 - 3ab) + alpha^(3/2) beta^(3/2) = 0`
now,` x^2 + x(-(sqrt alpha + sqrt beta)^3 + 3 sqrt(alpha beta) (sqrt alpha + sqrt beta)`
`x^2 -x[(sqrt alpha + sqrt beta)^3 - 3 sqrt(alpha beta) (sqrt alpha + sqrt beta)] + alpha^(3/2)beta^(3/2)`
`x^2 - x[alpha^3/2 + beta^(3/2) + 3 sqrt(alpha beta)(sqrt alpha + sqrt beta) - 3 sqrt (alpha beta) ( sqrt alpha + sqrt beta) ] + alpha^(3/2)* beta^(3/2) = 0`
`x^2 - x[alpha^(3/2) + beta^(3/2)] + alpha^(3/2) beta^(3/2) = 0`
option A is correct
682.

`(i + 2/i)((1-i)/(1+i)) = x+iy`

Answer» `(i+2/l)((1-i)/(1+i))`
`(i^2+2)/i((1-i)(1-i))/((1+i)(1+i))`
`(-1+2)/i(1-i)^2/(1-i^2)`
`(1/i)*(1+1-2i)/(1-(-1))`
`(-2i)/(2i)`
x=-1.
y=0.
683.

Show that `sqrt(3)cosec 20^@ - sec 20^@= 4`

Answer» `sqrt3 cosec 90^@ - sec 20^@ = 4`
LHS
`sqrt3 cosec 90^@ - sec 20^@`
`= sqrt3 1/(sin 20^@) -1/(cos 20^@) = ( sqrt3 cos 90^@ - sin 20^@)/(sin20^@* cos20^@)`
`= (sqrt3 cos 20^@ - sin 20^@)/(sin 20^@ * cos 20^@)`
`= (sqrt3/2cos 20^@ - 1/2 sin 20^@)/(1/2 sin 20^@ cos20^@)`
`= (sin 60^@cos20^@ - cos 60^@sin20^@)/(1/2 sin 20^@cos20^@)`
`= 2 xx 2 xx (sin (60^@-20^@))/(2 sin20^@cos90^@)`
`= 4 xx (sin 40^@)/(sin 40^@)`
`= 4 =`RHS
Hence proved
684.

If `sin theta + cosec theta = 2` then the value of `sin^20 theta + cosec^20 theta`, isA. `2^10` B. `2^5` C. `2^20` D. `2`.

Answer» `sintheta+cosectheta = 2`
`=>sintheta+1/sintheta = 2`
`=>1+sin^2theta - 2sintheta = 0`
`=>(1-sintheta)^2 = 0`
`=>sintheta = 1`
So, `cosectheta = 1/sintheta = 1`.
So, `sin^20theta +cosec^20theta = 1^20+1^20 = 1+1 = 2`
685.

Given a `DeltaABC` with unequal sides. P is the set of all the points which is equidistant from B & C and Q is the set of all points which is equidistant from sides AB & AC. Then `n(PnnQ)` equals:a. 1b. 2c. 3d. Infinite

Answer» From the given diagram.n(P`nn`Q)=1
686.

Let `A ={x:x " is a positive integer "}` and let ` B= {x:x " is a negative intger "}`. Find `A cup B`.

Answer» Clearly , `Acup B { x:x "is a integer and " x ne 0}`.
687.

Write the following sets in roster from: H = {x : x is a perfect square and x < 50}

Answer»

Perfect squares are: 

02 = 0 

12 = 1 

22 = 4 

32 = 9 

42 = 16 

52 = 25 

62 = 36 

72 = 49 

82 = 64 > 50 

The elements which are perfect square and x < 50 are 0, 1, 2, 3, 4, 5, 6, 7

688.

Write the following sets in roster from:G = {x : x is a prime number and 80 &lt; x &lt; 100}.

Answer»

Prime number = Those number which is divisible by 1 and the number itself.

Prime numbers are 2, 3, 5, 7, 11, 13,… 

The numbers 80 < x < 100 are 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 

The elements which are prime and lies between 80 and 100 are 83, 89, 97 

So, G = {83, 89, 97}

689.

If `n(PnnQ) = 23, n(PuuQ) = 57` and `n(Q-P) = 26`, then `n(P -Q) = "_____"`.A. 24B. 54C. 8D. 14

Answer» Correct Answer - C
`n(P - Q) = n(P) - n(P nn Q)`.
690.

In an examiniation `55%` of the students failed in chemistry, `47%` failed in physics and `23%` failed in both, find the pass percentage of the class.A. 0.79B. 0.44C. 0.27D. 0.21

Answer» Correct Answer - D
Use the concept of Venn diagrams.
691.

In a group of 15, 8 speaks Telugu, 9 speaks Hindi, 3 speaks neither. The number of persons speaks both languages is A) 6 B) 7 C) 8 D) 5

Answer»

Correct option is D) 5

692.

There are 27 students take Chemistry, 22 take Physics, 7 take both then the ratio between takes only Physics and Chemistry is A) 4 : 5 B) 3 : 4 C) 4 : 3D) 5 : 4

Answer»

Correct option is C) 4 : 3

693.

In a class 16 students read Mathematics, 17 read General Science and 6 both (of these). The number of students in the class which read either Mathematics or General Science is Answer: A) 10 B) 27 C) 6 D) 11

Answer»

Correct option is B) 27

694.

Write the following sets in roster from: F = {x : x is a letter in the word’ MATHEMATICS’}.

Answer»

There are 11 letters in the word MATHEMATICS, out of which M, A and T are repeated. 

So, F = {M, A, T, H, E, I, C, S} Q. 3 G.

695.

Write the following sets in roster from: D = {x : x is an integer, x2 ≤ 9}.

Answer»

Integers = …, -4, -3, -2, -1, 0, 1, 2, 3, 4, … 

x = -4, x2 = (-4)2 = 16 > 9 

x = -3, x2 = (-3)2 = 9 

x = -2, x2 = (-2)2 = 4 

x = -1, x2 = (-1)2 = 1 x = 0, 

x2 = (0)2 = 0

x = 1, x2 = (1)2 = 1 

x = 2, x2 = (2)2 = 4 

x = 3, x2 = (3)2 = 9 

x = 4, x2 = (4)2 = 16 

The elements of this set are -3, -2, -1, 0, 1, 2, 3 

So, D = {-3, -2, -1, 0, 1, 2, 3}

696.

Write the following sets in roster from:E = {x : x is a prime number, which is a divisor of 42}.

Answer»

Prime number = Those number which is divisible by 1 and the number itself. 

Prime numbers are 2, 3, 5, 7, 11, 13, … 

Divisor of 42: 

42 = 1 × 42 

42 = 2 × 21 

42 = 3 × 14 

42 = 6 × 7 

So, divisors of 42 are 1, 2, 3, 6, 7, 14, 21, 42 

The elements which are prime and divisor of 42 are 2, 3, 7 

So, E = {2, 3, 7}

697.

Number of subsets of the set A = {1, 2, 3, 4} is …………A) 4 B) 8 C) 12 D) 16

Answer»

Correct option is (D) 16

698.

{x: x is a prime number and a divisor of 6} =……………(A) {1, 2, 3, 6} (B) {1, 2, 3} (C) {2, 3} (D) {2, 3, 6}

Answer»

Correct option is (C) {2, 3}

699.

A ∪ B = A) {x : x ∉ A or x ∈ B} B) {x : x ∈ A or x ∈ B} C) {x : x ∈ A, x ∈ B} D) {x : x ∈ A or x ∉ B}

Answer»

Correct option is B) {x : x ∈ A or x ∈ B}

700.

If n(A) represents the number of elements in the set A, the number of proper subsets of A are A) 2 × nB) 2n – 1 C) n × A D) 2n

Answer»

Correct option is B) 2n – 1