InterviewSolution
Saved Bookmarks
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 1. |
Anlges of a triangle are in 4:1:1 ratio .The reatio between its greatest side and perimeter isA. `(3)/(2+sqrt(3)`B. `(sqrt(3))/(2+sqrt(3))`C. `(sqrt(3))/(2-sqrt(3))`D. `(1)/(2+sqrt(3))` |
|
Answer» Angles are in ratio 4:1:1 `rArr " angles are " 120^@,30^@,30^@` If sides opposite to these angles are a,b,c respectively , then a will be the gratest side .Now from sine formula `(a)/(sin 120^@) =(b)/(sin30^@)= (c ) /(sin 30 ^@)` `rArr a/(sqrt(3)//2)=b/(1//2)=c/(1//2)` `rArr a/sqrt(3)=b/1=c/1= k (say ) ` than `a= sqrt(3K), ` perimeter `= (2+sqrt(3))k` `therefore " required ratio" = (sqrt(3)k)/((2+sqrt(3))k)=(sqrt(3))/(2+sqrt(3))` |
|
| 2. |
value of the expression `(b-c)/(r_(1))+(c-a)/r_(2)+(a-b)/r_(3)` is equal toA. 1B. 2C. 3D. 0 |
|
Answer» `((b-c))/(r_(1))+((c-a))/r_(2)+((a-b))/r_(3)` `rArr (b-c)((s-a)/(Delta))+(c-a)((s-b)/(Delta))+(a-b)((s-c)/(Delta))` `rArr ((s-a)(b-c)+(s-b)(c-a)+(s-c)(a-b)])/(Delta)=(0)/(Delta)=0` Thus , `(b-c)/r_(1)+(c-a)/r_(2)+(a-b)/r_(3)=0` |
|
| 3. |
If A,B,C are the angles of a triangal ,prove that : cos A +cos B + cos `C = 1+r/R` |
|
Answer» cos A +cos B +cos C =2 cos `((A+B)/(2))cos ((A-B)/(2))+cos C` `=2 sin"" C/2 cos ((A-B)/(2))+1-2 sin ^2""C/2=1+sin"" C/2= 1+2 sin """C/2[cos ((A-B)/(2))-sin (C/2)]` `1+2sin""C/2[cos ((A-B)/(2))-cos((A+B)/(2))]" "{ therefore ""C/2= 90^@-((A+B)/(2))}` `= 1+2 sin""C/(2).2 sin ""A/2.sin""B/2=1 +4 sin"" A/2.sin""B/2.sin""C/2` `1+r/R" "{as,r = 4R sin A//2. sin B//2.sinC//2}` `rArr cos A+cos B +cosC = 1+r/R.` |
|
| 4. |
Expand : `( y+2)^6` |
|
Answer» `""^6C_(0)y^6+""^6C_(1)y^(5).2+""^(6)C_(2)y^(4).2^2+""^(6)C_(3)y^(3)+""^6C_(4)y^(2).2^(4)+""^6C_(5)y^(1).2^(5)+""^6C_(6).2^6` `= y^(6)+12y^(5)+60y^(4)+160y^(3)+240y^(2)+192y+64` |
|
| 5. |
In a triangle ABC if a: b: c= 4:5:6 then ratio between its circumradius and inredius isA. `16/7`B. `16/9`C. `7/16`D. `11/7` |
|
Answer» `R/r=(abc)/(4Delta)//Delta/s=((abc)s)/(4Delta^2 )rArrR/r=(abc)/(4(s-a)(s-b)(s-c)).....(i)` `therefore a:b:c=4 : 5:6 rArr a/4=b/5=c/6=k`(say) `rArr a=4k,b=5k , c=6k ` `therefore s=(a+b+c)/(2)=(15k)/(2),s-a=(7k)/(2).s-b=(5k)/(2), s-c =(3k)/(2)` using (i) these values `R/r=((4k)(5k)(6k))/(4((7k)/2)((5k)/(2))((3k)/2))=16/7` |
|
| 6. |
Find numerically greatest term is the expansion of `(3-5x)^11 "when " x=1/5` |
|
Answer» Using `(n+1)/(1+|a/b|)-1le r le (n+1)/(1+|a/b|)` `(11+1)/(1+|3/(-5x)|)-1le r le (11+1)/(1+|3/(-5x)|)` solving we get `2 le r le 3 ` `therefor r= 2, 3 ` So, the greatest terms are `T_(3) = ""^C_(2).3^9 (-5x)^2=56.3 ^(9)= T_(4)` From above we say that the value of boht greatest terms are equal . |
|