Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

51.

If `vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2,` then `|vecuxxvecv|` is equal toA. `2sqrt(16-(a.b)^(2))`B. `sqrt(16-(a.b)^(2))`C. `2sqrt(4-(a.b)^(2))`D. `2sqrt(4+(a.b)^(2))`

Answer» Correct Answer - A
Now, `|uxxv|=(a-b)xx(a+b)=2|=2||axxb|`
`[because axxa =bxxb=0]`
and `|axxb|^(2)+(a*b)^(2)=(ab sin theta)^(2)+(ab cos theta)^(2)=a^(2)b^(2)`
`|axxb|=sqrt(a^(2)b^(2)-(a*b)^(2))`
So`|uxxv|=2|axxb|=2sqrt(a^(2)b^(2)-(a*b)^(2))`
`=2sqrt(2^(2)2^(2)-(a*b)^(2))`
`=2sqrt(16-(a*b)^(2))[because |a|=|b|=2]`
52.

A ship is sailing towardsthe north at a speed of 1.25 m/s. The current is taking it towards the eastat the rate of 1 m/s and a sailor is climbing a vertical pole on the ship atthe rate of 0.5 m/s. Find the velocity of the sailor in space.

Answer» Correct Answer - `1.677` m`//`sec.
We take the unit vectors `hati, hatj and hatk` parallel to the east, north and vertically upwards in the direction of pole, respectively. Then the velocity vectors of the current, ship and the sailor are, respectively, `hati, 1.25hatj and 0.5hatk`. Velocity `vecv` of the sailor in space is the resultant of these vectors. Hence,
`vecv= hati+ 1.25hatj+ 0.5 hatk`
Then `|vecv|= sqrt(1+ (1.25)^(2) + (0.5)^(2))`
`" "=sqrt(1+ 1.5625 + .25)`
`" " = sqrt(2.8125)` = 1.677 m/s
53.

Let `veca,vecb,vecc` be three unit vectors such that `3veca+4vecb+5vecc=vec0`. Then which of the following statements is true? (A) `veca` is parrallel to vecb` (B) `veca` is perpendicular to vecb` (C) `veca` is neither parralel nor perpendicular to `vecb` (D) `veca,vecb,vecc` are copalanarA. `veca` is parallel to `vecb`B. `veca` is perpendicular to `vecb`C. `veca` is neither parallel nor perpendicular to `vecb`D. none of these

Answer» Correct Answer - D
`3veca + 4vecb + 5vecc =0`
Hence `veca, vecb and vecc` are collinear.
No other conclusion can be derived from it.
54.

If a, b, c are linearly independent vectors and `delta =|(a,b,c),(a.a,a.b,a.c),(a.c,b.c,c.c)|` then (a)`delta = 0` (b) `delta = 1` (C) A=any non-zero volue (d)None of theseA. 1B. 0C. `-1`D. None of these

Answer» Correct Answer - B
Since a, b and c are coplanar, there must exist three scalars x,y and z not all zero such that
`ax+yb+zc=0" "…(i)`
ON multiplyaing both sids of Eq (i) by a and b respectively we get
`xaa+ya.b+za.c =0:" "…(ii)`
`ab.a+yb.b+zb.c=0" "...(iii)`
On eliminating x,y and z from Eqs, (i), (ii) and (iii), we get
`|{:(a,b,c),(a.a., a.b.,b.c),(b.a, a.b, b.c):}|=0`
55.

Four non zero vectors willalways bea. linearly dependent b. linearly independentc. either a or b d. none of theseA. linearly dependentB. linearly independentC. either a or bD. none of these

Answer» Correct Answer - A
Four or more than four non-zero vectors are always linearly dependent.
56.

`ABCDEF` is a regular hexagon, Fig. 2 (c ) .65. What is the value of ` (vec (AB) + vec (AC) + vec (AD) + vec (AE) + vec (AF) ?` .A. `vec(AO)`B. `2vec(AO)`C. `4vec(AO)`D. `6vec(AO)`

Answer» Correct Answer - D
57.

In going from one city to another, a car travles 75`km` north, 60`km` noth-west and 20`km` east,The magnitude of displacement between the two cities is `(take1//sqrt(2)=0.7)`A. 170`km`B. 137`km`C. 119`km`D. 140`km`

Answer» Correct Answer - C
`vec(S)=75hat(j)+[60cos 45^(@)hat(j)-60sin 45^(@)hat(i)]+20hat(i)`
`(20-60xx0.7)hat(i)+(60xx0.7+75)hat(j)=-22hat(i)+117hat(j)`
`S=sqrt(22^(2)+117^(2))=sqrt(484+13686)=sqrt(14173)=119km`
58.

A car travles 6km towards north at an angle of `45^(@)` to the east and then travles distance of 4km towards north at an angle of `135^(@)` to east (figure). How far is the point from the starting point? What angle does the straight line joining its initial and final position makes with the east?

Answer» Net movement along x-direction,
`S_(x)=(6-4) cos 45^(@) hat(i)=2xx1/sqrt(2)=sqrt(2)km`
Net movement along y-direction,
`S_(y)=(6+4) sin 45^(@) hat(j)=10xx1/sqrt(2)=5sqrt(2)km`
Net movement from starting point,
`|vec(s)|=sqrt(s_(a)^(2)+s_(y)^(2))=sqrt((sqrt(2))+(5sqrt(2))^(2))=sqrt(52) km`
Angle which makes with the east direction,
`tan theta=(Y-compon ent)/(X-compon ent)=(5sqrt(2))/sqrt(2) :. theta=tan^(-1)(5)`
59.

A car travles 6km towards north at an angle of `45^(@)` to the east and then travles distance of 4km towards north at an angle of `135^(@)` to east (figure). How far is the point from the starting point? What angle does the straight line joining its initial and final position makes with the east? A. `sqrt(50)km` and `tan^(-1)(5)`B. `10 km` and `tan^(-1)(5)`C. `sqrt(52)km` and `tan^(-1)(5)`D. `sqrt(52)km` and `tan^(-1)(sqrt(5))`

Answer» Correct Answer - A
60.

If ` vec a , vec b , vec c`are mutually perpenedicularvectors of equal magnitudes, show thatthe vector ` vec a+ vec b+ vec c`is equally inclined to ` vec a , vec b ,a n d vec cdot`

Answer» Let `|vec(a)|=|vec(b)| = |vec(c )|=a`
Given that, `vec(a).vec(b) = vec(b).vec(c) = vec(c).vec(a) =0`
Now `(vec(a) + vec(b) + vec(c ))^(2)`
`=|vec(a)|^(2) + |vec(b)|^(2) + |vec(c )|^(2) + 2(vec(a).vec(b) + vec(b).vec(c ) + vec( c) .vec(a))`
`=a^(2) + a^(2) +a ^(2) +0=3a^(2)`
`implies |vec(a)+vec(b)+vec(c)|=sqrt(3)a`
Let `theta` be the angle between `vec(a)` and `(vec(a) + vec(b) + vec(c ))`
`therefore vec(a). (vec(a) + vec(b) + vec(c )) = |vec(a)||vec(a)+vec(b)+vec(c )|costheta_(1)`
`implies vec(a) .vec(a)+vec(a).vec(b) + vec(a).vec(c ) = a(asqrt(3))costheta_(1)`
`implies a^(2) + 0 + 0 = a^(2) sqrt(3) cos theta_(1)`
`implies cos theta_(1) = (a^(2))/(a^(2)sqrt(3)) = (1)/(sqrt(3))`
`implies theta_(1) = cos^(-1)((1)/(sqrt(3)))`
Similarly,
angle between `vec(b)` and `vec(a) + vec(b) + vec(c) = cos^(-1) .(1)/(sqrt(3))`
and angle between `vec(c ) and vec(a) + vec(b) + vec(c ) = cos^(-1).(1)/(sqrt(3))`.
Therefore, `vec(a) + vec(b) + vec(c )` makes equal angles with the vectors `vec(a),vec(b)` and `vec(c )`.
Hence Proved.
61.

If vectors `vec(A),vec(B)` and `vec(C)` have magnitudes 8,15 and 17 units and `vec(A) +vec(B) = vec(C)`, find the angle between `vec(A)` and `vec(B)`.

Answer» Correct Answer - `90^(@)`
62.

Find magnitude of A-2 B 3 C, where, `A = 2hati+3hatj, B = hati + hatj and c =hatk.`

Answer» Correct Answer - A
`A -2B + 3C = (2hati+ 3hatj) - 2(hati+hatj) + 3hatk`
`= (hatj+3hatk)`
`:. |A - 2B + 3C| = sqrt((1)^2+(3)^2)`
`=sqrt(10) units.`
63.

`|vec(A)xxvec(B)|^(2)+|vec(A).vec(B)|^(2)=`A. ZeroB. `A^(2)B^(2)`C. `AB`D. `sqrt(AB)`

Answer» Correct Answer - B
Let `theta` be angle between Vectors `vec(A)` and `vec(B)`
`:. |vec(A)xxvec(B)|=AB sin theta`
and `|vec(A).vec(B)|= AB cos theta`
`|vec(A)xxvec(B)|^(2)= |vec(A).vec(B)|^(2)=(AB sin theta)^(2)+(AB cos theta)^(2)`
`=A^(2)B^(2)sin^(2)theta+A^(2)B^(2)cos^(2)theta= A^(2)B^(2)`
64.

If `vec(A)xxvec(B)= vec(C )+vec(D)`, then select the correct alternative.A. `vec(B)` is parallel to `vec(C )+vec(D)`B. `vec(A)` is perpendicualr to `vec(C )`.C. Components of `vec(C )` along `vec(A)`= component of `vec(D)` along `vec(A)`D. Component of `vec(C )` along `vec(A)`= -component of `vec(D)` along `vec(A)`

Answer» Correct Answer - D
According to defination of cross- product `vec(C )+vec(D)` is perpendicualr to both `vec(A)` and `vec(B)`.
i.e., `vec(A).(vec(C )+vec(D))=0`
or `vec(A).vec(C )+vec(A).vec(D)=0`
or A(component of `vec(C )` along `vec(A)`)+A(component of `vec(D)` along `vec(A))=0`
or component of `vec(C )` along `vec(A)`= -component of `vec(D)` along `vec(A)`
65.

Find the (i) Scalar component and (ii)vector component of `A=3hati+4hatj+5hatk on B=hati+hatj+hatk.`

Answer» (i) Scalar component of a A along B is
`Acostheta=A.hatB=(3hati+4hatj+5hatk).((hati+hatj+hatk))/(sqrt(3))`
` =(3+4+5)/(sqrt(3))=(12)/(sqrt(3))=4sqrt(3)`
(ii) Vector component of A along B is
`(Acostheta)hatB=(A.hatB)hatB`
`(4sqrt(3))((hati+hatj+hatk))/(sqrt(3))=4hati+ 4hatj+4hatk`
66.

If ` vec a= hat i+ hat j+ hat k a n d`` vec b= hat j- hat k ,`find avector ` vec c`such that ` vec a "x" vec c= vec b`and ` vec adot vec c=3`

Answer» Here`vec(a)=hat(i) + hat(j) + hat(k) and vec(b) = hat(j)-hat(k)`.
`Let vec(c)= c_(1) hat(i) + c_(2) hat(j) + c_(3)hat(k).` Then,
`vec(a) * vec(c) = 3 and vec(a) xx vec(c) = vec(b)`
` rArr (hat(i) + hat(j) +hat(k))* (c_(1) hat(i) + c_(2) hat(j) + c_(3)hat(k))=3`
`and (hat(i) + hat(j) + hat(k))xx ( c_(1) hat(i) + c_(2) hat(j) + c_(3) hat(k)) = ( hat(j) - hat(k))`
`rArr c_(1) + c_(2) + C_(3) " "...(i) and |(hat(i),hat(j),hat(k)),(1,1,1),(c_(1), c_(2) , c_(3))|=(hat(j)-hat(k))`...(ii)
Now, (ii) gives : `(c_(3) - c_(2) hat(i)- ( c_(3)-c_(1)) hat(j) + ( c_(2) - c_(1)) hat(k)= (hat(j) - hat(k))`
`rArr c_(3)- c_(2) = 0, c_(1)-c_(3) = 1 and c_(2) - c_(1) =-1`
Putting `C_(3) = c_(2) " in (i), we get " c_(1) + 2 c_(2) = 3.`
On solving `c_(1)+ 2 c_(2) = 3 and c_(1) - c_(2) = 1," we get " c_(2) = 2/3 and c_(1)=5/3`.
`:. c_(1)= 5/3, c_(2) = 2/3 and c_(3) = 2/3`.
Hence, `vec(c) = 5/3 hat(i) + 2/3hat(j) + 2/3 hat(k) rArr vec(c) = 1/3 (5 hat(i) + 2 hat(j) +2hat(k)).`
67.

If `|vec(a)| = 2, |vec(b)|= 7 and (vec(a) xx vec(b))=(3 hat(i) + 2 hat(j) + 6 hat(k)), " find the angle between " vec(a) and vec(b).`

Answer» Correct Answer - `pi/6`
`vec(a) xx vec(b)= (3 hat(i) + 2 hat(j)+ 6 hat(k))`
`rArr|vec(a) xxvec(b)|= sqrt(3^(2)+2^(2)+6^(2))=7 rArr|vec(a)||vec(b)| sin theta = 7`
`rArr sin theta= 7/(|vec(a)||vec(b)|)=7/((2 xx7))=1/2 rArr theta = 30^(@).`
68.

If `vec(a) = (hat(i) - 2 hat(j)+ 3 hat(k)) and vec(b) = (2 hat(i) + 3 hat(j)- 5 hat(k))` then find `(vec(a) xx vec(b)) and " verify that " (vec(a) xx vec(b))` is perpendicular to each one of` vec(a) and vec(b)`.

Answer» We have `(vec(a) xx vec(b))= |(hat(i), hat(j), hat(k)),(1,-2,3),(2,3,-5)|`
`=(10-9) hat(i)-(-5-6)hat(j) + (3+4) hat(k) = ( hat(i) + 11 hat(j) + 7 hat(k))`.
Now, `(vec(a) xx vec(b) ) * vec(a)= (hat(i) + 11 hat(j) + 7 hat(j))*(hat(i) - 2hat(j) + 3 hat(k)).`
`:. (vec(a) xx vec(b))*vec(a) = (1-22+21)=0`
`:. (vec(a) xxvec(b)) bot vec(a).`
And,`(vec(a) xx vec(b))* vec(b)=(hat(i) +11vec(j)+7vec(k))*(2hat(i)+3 hat(j)-5hat(k))`
`=(2+33-35)=0`.
`:. (vec(a)xxvec(b))bot vec(b)`.
69.

If `vec(a) = 4 hat(i) + 3 hat(j) + 2 hat(k) and vec(b)= 3 hat(i)+ 2 hat(k), "find" |vec(b) xx 2 vec(a)|.`

Answer» We have `vec(b) = ( 3 hat (i) + 2 hat(k) ) and 2 vec(a) = ( 8 hat(i) + 6 hat(j) + 4 hat(k))`
`:. ( vec(b) xx2 vec(a))=|(hat(i),hat(j), hat(k)),(3,0,2),(8,6,4)|`
`= (0-12) hat(i) + (16 - 12) hat(j) + (18-0) hat(k)`
`= (-12hat(i) + 4 hat(j) + 18 hat(k)).`
`:. |vec(b) xx 2 vec(a)| = |-12 hat(i) + 4 hat(j) + 18 hat(k)|`
` = sqrt((-12)^(2) + 4^(2) + (18)^(2))=sqrt(484 )= 22.`
Hence,`| vec(b) xx 2 vec(a)| = 22.`
70.

Find a unit vector perpendicular to each of thevectors `( -> a+ -> b)`and `( -> a- -> b)`, where ` -> a= hat i+ hat j+ hat k , -> b= hat i+2 hat j+3 hat k`.

Answer» We have
`(vec(a)+vec(b)) = (hat(i) + hat(j) + hat(k)) + (hat(i) + 2 hat(j) + 3 hat(k))=(2hat(i) + 3 hat(j) + 4 hat(k)) and`
`(vec(a) - vec(b)) = (hat(i) + hat(j) + hat(k))- (hat(i) + 2 hat(j) + 3 hat(k)) = (- hat(j) - 2 hat(k)).`
`:. (vec(a) + vec(b)) xx (vec(a) - vec(b))= |(hat(i),hat(j),hat(k)),(2,3,4),(0,-1,-2)|`
`=(-6+4)hat(i)-(-4-0)hat(j) + (-2-0)hat(k)`
`=(-2hat(i) + 4 hat(j)-2 hat(k)).`
`:. |(vec(a) + vec(b)) xx(vec(a)-vec(b))|= sqrt((-2)^(2)+4^(2)+(-2)^(2))=sqrt((24)) = 2sqrt(6).`
So, the vectors of magnitude 5 units and perpendicular to each the vectors `(vec(a)+vec(b)) and (vec(a)-vec(b))` are:
`pm(5{(vec(a) + vec(b)) xx(vec(a)- vec(b))})/(|(vec(a) + vec(b)) xx (vec(a) -vec(b))|)=pm (5(-2hat(i) +4hat(j) -2 hat(k)))/(2sqrt(6))=pm (5(-hat(i) + 2 hat(j) - hat(k)))/sqrt(6).`
71.

Find a vector of magnitude 15, which is perpendicular to both the vectors `(4hat(i) -hat(j)+8hat(k)) and (-hat(j)+hat(k)).`

Answer» Let `vec(a) = (4 hat(i)-hat(j) + 8 hat(k) ) and vec(b)= (-hat(j) + hat(k)).`
A unit vector perpendicular to both `vec(a) and vec(b) = ((vec(a) xxvec(b)))/(|vec(a) xx vec(b)|`.
Now, `vec(a) xx vec(b) = |{:(hat(i),hat(j),hat(k)),(4,-1,8),(0,-1,1):}|`
`=(-1+8) hat(i) - ( 4-0) hat(j) + (-4-0) hat(k)`
`=(7 hat(i) - 4 hat(j) - 4 hat(k)).`
`:. |vec(a) xxvec(b)| = sqrt(7^(2) + (-4)^(2)+(-4)^(2)) =sqrt(81)=9.`
So, a unit vector perpendicular to both `vec(a) and vec(b)`.
`((vec(a) xxvec(b)))/|(vec(a) xx vec(b))| = (7 hat(i) -4 hat(j)- 4 hat(k))/9.`
The required vector `=(15(7hat(i)-4hat(j)-4hat(k)))/9 =5/3(7 hat(i) - 4 hat(j) - 4 hat(k)).`
72.

Find a unit vector perpendicular to the plane ABC, where thecoordinates of `A , B , a n d C`are `A(3, -1, 2), B(1, -1, -3)a n d C(4, -3, 1)dot`

Answer» Correct Answer - `(-hat(i) - 2 hat(j) + 4 hat(k))/sqrt(21)`
Required vector `=((vec(AB) xxvec(AC)))/(|vec(AB) xx vec(AC)|).`
73.

Find the area of the trinagle whose two adjacent sides are determined by the vectors (i) `vec(a)= -2hat(i)-5 hat(k)`and `vec(b)=hat(i)- 2 hat(j)- hat(k)` (ii) `vec(a)= 3 hat(i)+ 4 hat(j)` and `vec(b)=-5hat(i)+7 hat(j).`

Answer» Correct Answer - (i) `1/2 sqrt(165)` sq units (ii) `41/2 `sq units
Area of a triangle `=1/2|vec(a) xx vec(b)| " where "vec(a) and vec(b)` are adjacent sides.
74.

Find the sine of the angle between the vectors `vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).`

Answer» We have
`(vec(a) xxvec(b))= |(hat(i),hat(j),hat(k)),(2,-1,3),(1,3,2)|`
`= (-2 -9) hat(i) - (4-3)hat(j) + ( 6+1)hat(k)`
`=(-11hat(i) - hat(j) + 7 hat(k)).`
`|vec(a) xx vec(b)|=sqrt((-11)^(2)+ (-1)^(2) + 7^(2))=sqrt(171) = 3 sqrt(19)`
`|vec(a)|= sqrt(2^(2)+ (-1)^(2)+ 3^(2))=sqrt(14) ,`
`|vec(b)|=sqrt(1^(2)+3^(2) + 2^(2)) =sqrt(14).`
Let`theta" be the angle between "vec(a) and vec(b).` Then,
`sin theta =(|vec(a) xx vec(b)|)/(|vec(a)| |vec(b)|) =(3sqrt(19))/((sqrt(14)) (sqrt14))=3/14 sqrt(19).`
75.

What is the value of linear velocity, if `vecomega=3hati-4hatj+hatk` and `vecr=5hati-6hatj+6hatk`?

Answer» Correct Answer - D
(d ) Velocity `v=omegaxxr|underset(5" "-6" "6)overset(hati" "hatj" "hatk)(3""-4" "1)|=-18hati -13hatj+2hatk`
76.

AT what angle two forces (P +Q) and (P-Q) act so that resultant is (i) `sqrt(3 P^2 + Q^2)` (ii) `sqrt(2 (P^2 + Q^2))` (iii) ` sqrt(P^2 + Q^2)` .

Answer» Correct Answer - `60^(@)`
77.

The following sets of three vectors act on a body. Whose resultant cannot be zero ?A. `10,10,10`B. `10,10,20`C. `10,20,23`D. `10,20,40`

Answer» Correct Answer - D
78.

At what angle should the two forces vectors 2F and `sqrt(2)` F act so that the resultant force is `sqrt(10)F`

Answer» `A=2F,B=sqrt(2) F,R=sqrt(10)F`
`R^(2)=A^(2)+B^(2)=2AB cos theta`
`rArr 10F^(2)=4F^(2)+2(2F)sqrt(2)F cos theta`
`rArr cos theta=1//sqrt(2)rArr theta =45^(@)`
79.

The minimum number of vectors having different planes which can be added to give zero resultant isA. `2`B. `3`C. `4`D. `5`

Answer» Correct Answer - C
80.

The following sets of three vectors act on a body, whose resultant can be zero. These are :A. `10 , 10 , 10`B. `10 , 10 , 20`C. `10 , 20 , 23`D. `10 , 20 , 40`

Answer» Correct Answer - D
81.

The resultant of `vecA and vecB` makes an angle `alpha` with `vecA` and `beta and vecB`,A. `alpha lt beta if A gt B`B. `alpha lt beta if A lt B`C. `alpha = beta if A lt B`D. `alpha lt beta if A = B`

Answer» Correct Answer - A
82.

A vector coplanar with vectores ` hati + hatj and hatj + hatk ` and parallel to the vector ` 2 hati - 2 hatj - 4 hatk `isA. `hati - hatk`B. `hati - hatj -2hatk `C. `hati +hatj-hatk `D. `3hati+3hatj-6hatk`

Answer» Correct Answer - B
Any vector coplanar with vectors ` hati + hatj and hatj + hatk ` is
`a=x (hati +hatj )+y (hatj +hatk)`
`implies a=xhati +(x+y)hatj +yhatk`
It is given that a is paraallel to ` 2 hati - 2 hatj - 4 hatk `
` therefore a= lamda ( 2 hati - 2hatj - 4 hatk )` for some scalar ` lamda `.
`implies [ x hati +(x+y) hatj +yhatk ]= lamda (2 hati - 2hatj - 4 hatk)`
`implies x= 2 lamda , x+y=- 2 lamda and y=- 4 lamda `
`implies x=2lamda and y=-4 lamda `
`therefore a= 2 lamda ( hati - hatj - 2hatk )` , where `lamda in R.`
83.

For the figure shown .A. `vecA+vecB=vecC`B. `vecB+vecC=vecA`C. `vecC+vecA=vecB`D. `vecA+vecB+vecC=0`

Answer» Correct Answer - C
84.

Let `vecC=vecA+vecB`A. `|vecC|` is always greater then `|vecA|`B. It is possible to have `|vecC|lt|vecA|` and `|vecC|lt|vecB|`C. `C` is always equal to `A+B`D. `C` is never equal to `A+B`

Answer» Correct Answer - B
85.

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel toA. `vec(B)`B. `vec(C )`C. `vec(B)xxvec(C )`D. `vec(B)xxvec(C )`

Answer» Correct Answer - C
If `vec(A).vec(B)=0,vec(A)` is perpendicular to `vec(B)`.
If `vec(A).vec(C )=0,vec(A)` is perpendicular to `vec(C )`.
So `vec(A)` is perpendicular to both `vec(B)` and `vec(C )`.
Also `vec(B)xxvec(C )` is perpendicular to both `vec(B)` and `vec(C )`.
Hence `vec(A)` is parallel to `vec(B)xxvec(C )`
86.

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel toA. `vec(B)`B. `vec(C )`C. `vec(B) . vec(C )`D. `vec(B) xx vec(C )`

Answer» Correct Answer - D
`vec(A) . vec(B) = 0 , vec(A) . vec(C ) = 0`
`vec(A) is _|_^(ar) to vec(B)` as well as `vec(C )`.
87.

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel toA. `vec(B)`B. `vec(C )`C. `vec(B).vec(C )`D. `vec(B)xxvec(C )`

Answer» Correct Answer - D
`vec(A).vec(B)=0`(given) `rArr vec(A)_|_vec(B)`
`vec(A).vec(C )=0` (given) `rArr vec(A)_|_vec(C )`
`vec(A)` is perpendicular to both `vec(B)` and `vec(C )`.
We know from the defination of cross product that `vec(B)xxvec(C )` is perpendicular to both `vec(B)` and `vec(C )`.
So `vec(A)` is parallel to `vec(B)xxvec(C )`.
88.

Three vector `vec(A)`,`vec(B)`, `vec(C )` satisfy the relation `vec(A)*vec(B)=0`and `vec(A).vec(C )=0`. The vector `vec(A)` is parallel toA. `vec(b)`B. `vec(c)`C. `vec(b).vec(c )`D. `vec(b)xxvec(c )`

Answer» Correct Answer - D
`vec(a).vec(b)=0` i.e., `vec(a)` and `vec(b)` will be perpendicular to each other
`vec(a).vec(c )=0 i.e., vec(a)` and `vec(c )` will be perpendicular to each other.
`vec(b)xxvec(c )` will be a vector perpendicular to both `vec(b)` and `vec(c )`
So `vec(a)` is parallel to `vec(b)xxvec(c )`
89.

Find the Cartesian equation of the plane passing through A(1, -2, 3) and the direction ratios of whose normal are 0, 2, 0.

Answer»

The Cartesian equation of the plane passing through (x1, y1, z1), the direction ratios of whose normal are a, b, c, is

a(x – x1) + b(y – y1) + c(z – z1) = 0

∴ the cartesian equation of the required plane is 

o(x + 1) + 2(y + 2) + 5(z – 3) = 0 

i.e. 0 + 2y – 4 + 10z – 15 = 0 

i.e. y + 2 = 0.

90.

Find the Cartesian equation of the plane passing through A( -1, 2, 3), the direction ratios of whose normal are 0, 2, 5.

Answer»

The cartesian equation of the plane passing ; through (x1, y1, z1), the direction ratios of whose normal are a, b, c, is

a(x – x1) + b(y – y1) + c(z – z1) = 0

∴ the cartesian equation of the required plane is

0(x +1) + 2(y – 2) + 5(z – 3) = 0 

i.e. 0 + 2y – 4 + 5z – 15 = 0 

i.e. 2y + 5z = 19.

91.

The magnitude of the vectors product of two vectors `|vecA| and |vecB|` may beA. greater than ABB. equal to ABC. less than ABD. equal to zero

Answer» Correct Answer - B::C::D
`|vecA xx vecB| = AB sin theta`
92.

The angle made by the vector `vecA=2hati+3hatj` with Y-axis isA. `tan^(-1)3//2`B. `tan^(-1)2//3`C. `sin^(-1)2//3`D. `cos^(-1)2//3`

Answer» Correct Answer - B
93.

A particle whose speed is `50ms^(-1)` moves along the line from `A(2,1)` to `B(9,25)`. Find its velocity vector in the from of `ahat(i)+bhat(j)`.

Answer» Correct Answer - 25
`vec(V)=50.vec(AB) vec(AB)=(9-2)hat(i)+(25-1)hat(j)`
`50/25(7hat(i)+24hat(j)) |vec(AB)|=sqrt((7)^(2)+(24)^(2))=14hat(i)+48hat(j)=25`
94.

A particle travels with speed `50ms^(-1)` from the point `(3,-7)` in a direction `7hat(i)-24(j)`. Find its position vector after `3s`.

Answer» Correct Answer - `45hat(i)-151hat(j)`
Speed= `50ms^(-1)`
`S= X_(0)+V_(0)t`
`=(3hat(i)-7hat(j))+3xx50(7hat(i)-24hat(j))/sqrt((24)^(2)+(7)^(2))`
`=3 hat(i)-7hat(j)+(150)/25(7hat(i)-24hat(j))`
`=3hat(i)-7hat(j)+42hat(i)-144hat(j)=45hat(i)-151hat(j)`
95.

A particle whose speed is `50ms^(-1)` moves along the line from `A(2,1)` to `B(9,25)`. Find its velocity vector in the from of `ahat(i)+bhat(j)`.A. `(7hat(i)+24hat(j)) m//s`B. `2(7hat(i)+24hat(j))m//s`C. `4(7hat(i)+24hat(j))m//s`D. `5(7hat(i)+24hat(j))m//s`

Answer» `vec(V)= 50(hat(A)B)`
`vec(AB)= (9-2)hat(i)+(25-1)hat(j)=(7hat(i)+24hat(j))`
`|vec(AB)|= sqrt((7^(2))+(24)^(2))`
`hat(AB)= (7hat(i)+24hat(j))/sqrt((7^(2))+(24^(2)))=((7hat(i)+24hat(j)))/(25)`
`vec(V)= 50.((7hat(i)+24hat(j)))/(25)= 2(7hat(i)+24hat(j))m//s`
96.

The projection of the vector `vec(A)= hat(i)-2hat(j)+hat(k)` on the vector `vec(B)= 4hat(i)-4hat(j)+7hat(k)` isA. `(19)/9`B. `(38)/9`C. `8/9`D. `4/9`

Answer» Correct Answer - A
Here, `vec(A)= hat(i)-2hat(j)+hat(k)`
`vec(B)= 4hat(i)-4hat(j)+7hat(k)`
The projection of `vec(A)` on `vec(B)= A cos theta`
`A cos theta= (AB cos theta)/B= (vec(A).vec(B))/B`
`=((hat(i)-2hat(j)+hat(k)).(4hat(i)-4hat(j)+7hat(k)))/(sqrt((4)^(2)+(-4)^(2)+(7)^(2)))`
`=(4+8+7)/(sqrt(18))=(19)/9`
97.

Calculate the are of the triangle determined by the two vectors `vec(A)=3hat(i)+4hat(j)` and `vec(B)=-3hat(i)+7hat(j).`

Answer» We know thet the half of magnitude of the cross product of two vectors gives the area of the triangle.
`vec(A)xxvec(B)=|(hat(i), hat(j), hat(k)) ,(3,4,0), (-3 ,7 ,0)|`
`=hat(i)(0-0)-hat(j)(0-0)+hat(k)(21+12)=33hat(k)`
Taking magnitude `|vec(A)xxvec(B)|=sqrt(33^(2))=33`.
So area of triangle `=1/2|vec(A)xxvec(B)|=33/2sq.`unit.
98.

If `A=3hat(i)+4hat(j)` and `B=7hat(i)+24hat(j)`,find the vector having the same magnitude as B and parallel to A.

Answer» `|B|=sqrt(7^(2)+(24)^(2))=sqrt(625)=25`
Unit vector in the direction of A will be `hat(A)=(3hat(i)+4hat(j))/5`
So required vector `=25((3hat(i)+4hat(j))/(5))=15hat(i)+20hat(j)`
99.

A particle travels with speed `50ms^(-1)` from the point `(3,-7)` in a direction `7hat(i)-24(j)`. Find its position vector after `3s`.A. `(45hat(i)-125hat(j))m`B. `(45hat(i)-151hat(j))m`C. `(45hat(i)-125hat(j))m`D. `(35hat(i)-115hat(j))m`

Answer» Correct Answer - B
Given speed `v= 50 m//s` in the direction `vec(a)= 7hat(i)-24hat(j)`
`vec(v)= vhat(a)` is the unit vector in the direction `7hat(i)-24hat(j)`
`hat(a)= ((7hat(i)-24hat(j)))/(sqrt((24)^(2)+(7)^(2)))=((7hat(i)-24hat(j)))/(25)`
`vec(v)= vhat(a)=50.((7hat(i)-24hat(j)))/(25)= 2(7hat(i)-24hat(j))m//s`
Initially the particle is at `vec(r)_(0)= (3hat(i)-7hat(j))m`
Position of the particle after 3 sec, `vec(r )= vec(r )_(0)+vec(v)t`
`implies vec(r )= (3hat(i)-7hat(j))+3xx2(7hat(i)-24hat(j))= (45hat(i)-151hat(j))m`
100.

If `A=3hat(i)+4hat(j)` and `B=7hat(i)+24hat(j)`,find the vector having the same magnitude as B and parallel to A.A. `5hat(i)+20hat(j)`B. `15hat(i)+10hat(j)`C. `20hat(i)+15hat(j)`D. `15hat(i)+20hat(j)`

Answer» Correct Answer - D
`|vec(B)|= sqrt(7^(2)+(24)^(2))= sqrt(625)= 25`
Unit vector in the direction of A will be `hat(A)= (3hat(i)+4hat(j))/5`
So required vector `= 25((3hat(i)+4hat(j))/5) = 15hat(j)+20hat(j)`