InterviewSolution
This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 51. |
Using the sutra Shunyam Samyaschahye, Solve the equation:1. 1/(x + 4) + 1/(x - 6) = 02. 5/(3x + 2) + 5/(2x + 8) = 03. (2x + 4)/(2x + 1) = (2x + 1)/(2x + 4)4. (3x + 2)/(5x + 7) = (x + 1)/(3x - 1) |
|
Answer» 1. 1/(x + 4) + 1/(x - 6) = 0 Here Numerator of two fractions are same = 1, So According to formula : x + 4 + x- 6 = 0 ⇒ 2x – 2 = 0 ⇒ 2x = ⇒ x = 1 2. 5/(3x + 2) + 5/(2x + 8) = 0 Here, Numerator of two fractions are same = 5, So according to formula : 3x + 2 + 2x + 8 = 0 ⇒ 3x + 2x + 2 + 8 = 0 ⇒ 5x + 10 = 0 ⇒ 5x = -10 ⇒ x = -2 3. (2x + 4)/(2x + 1) = (2x + 1)/(2x + 4) Sum of numerators of both sides = 2x + 4 + 2x + 1 = 4x + 5 Sum of denominators in both sides = 2x + 1 + 2x + 4 = 4x + 5 Two sums are equal, so by the formula 4x + 5 = 0 ⇒ 4x = -5 ⇒ x = -5/4 4. (3x + 2)/(5x + 7) = (x + 1)/(3x - 1) Sum of numerators of two sides = 3x + 2 + x + 1 = 4x + 3 …..(i) Sum of denominators of two sides = 5x + 7 + 3x – 1 = 8x + 6 …(ii) Ratio of (i) and (ii) is 1 : 2. So, by formula, equation any sum equal to zero, 4x + 3 = 0 ⇒ 4x = – 3 ⇒ x = - 3/4 |
|
| 52. |
Find the square of the following numbers1. 1032. 953. 2044. 225 |
|
Answer» 1. 103 1032= 103 + 03 / (03)2 = 106 / 09 = 10609 2. 95 952 = 95 – 05 / (-05)2 Here deviation = (- 5) = 90/25 = 9025 3. 204 2042 = 2 (204 + 4) / (04)2 = 2 (208)/16 = 416/16 = 41616 4. 225 2252 = 2 (225 + 25) / 252 = 2(250) /625 = 500 /625 = 50625 |
|
| 53. |
Find the cube of 103. |
|
Answer» Base = 100, Deviation = + 03 (103)3 = 103 + 2 x 03 / 3 x (03)2 / (03)3 = 103 + 6 / 27 / 27 = 1092727 |
|
| 54. |
Find the cube of 15. |
|
Answer» Base = 10, Deviation = + 5 Then, (15)3 = 15 + 2 x 5 / 3 x 52 / 53 = 15 + 10 / 75 / 125 = 25 / 75 / 125 = 25 /8 7 / 5 = 33/7/5 = 3375 |
|
| 55. |
Find the cube of 96. |
|
Answer» Base = 100, Deviation = (- 04) (96)3 = 96 + 2 x (- 04)/3 x (- 04)2 /(- 04)3 = 96 – 08 / 3 x 16 / – 64 = 88 / 48 / – 64 = 88 / 48 /1 – 64 = 88 / 47 / 100 – 64 = 88 / 47 / 36 = 884736 |
|
| 56. |
Sub-base digit is calculated as (a) Base ÷ Sub-base (b) Sub-base – Base (c) Sub-base ÷ Base (d) Base – Sub-base |
|
Answer» (c) Sub-base ÷ Base |
|
| 57. |
If the number is 22 and the base is 20, then the deviation is (a) 10 (b) 20 (c) 2 (d) – 2 |
|
Answer» If the number is 22 and the base is 20, then the deviation is 2. |
|
| 58. |
If base is 10 and sub-base is 30 then what sub-base digit will be (a) 3 (b) 2 (c) 1 (d) 43 |
|
Answer» If base is 10 and sub-base is 30 then what sub-base digit will be 3. |
|
| 59. |
How many groups makes when three digit number is multiplied by three digit number (a) 3 (b) 5 (c) 6 (d) 9 |
|
Answer» 5 groups makes when three digit number is multiplied by three digit number. |
|
| 60. |
Multiply with the help of Sutra Ekanyunena Purvena(i) 54 x 99(ii) 214 x 999(iii) 47 x 999(iv) 342 x 99999(v) 73 x 9(vi) 467 x 99 |
|
Answer» (i) 54 x 99 L.H.S = 54 – 1 = 53 R.H.S = 99 – 53 = 46 ∴54 x 99 = 54 – 1/99 – 53 = 5346 (ii) 214 x 999 L.H.S = 214 – 1 = 213 R.H.S = 9 99 – 213 = 786 ∴ 214 x 999 = 214 – 1/999 – 213 = 213786 (iii) 47 x 999 L.H.S = 047 – 1 = 046 R.H.S = 999 – 046 = 953 ∴ 47 x 999 = 047 – 1/999 – 046 = 046953 = 46953 (iv) 342 x 99999 L.H.S = 00342 – 1 = 00341 R.H.S = 99999 – 00341 = 99658 ∴00342 x 99999 = 00342 – 1 /99999 – 00341 = 0034199658 (v) 73 x 9 L.H.S = 73 – 1 = 72 R.H.S = 9 – 72 ∴ 73 x 9 = 73 – 1/9 – 72 = 72/9 – 72 = 729 – 72 = 657 (vi) 467 x 99 L.H.S = 467 – 1 = 466 R.H.S = 99 – 466 ∴ 467 x 99 = 467 – 1/99 – 466 = 466/99 – 466 = 46699 – 466 = 46233 |
|
| 61. |
Find the cube of the following numbers1. 152. 913. 324. 208 |
|
Answer» 1. 15 153 = 15 + 2 x (5) / 3 x (5)2 / 53 [Base = 10, deviation = 5] = 25/75/125 = 25/75/125 = 25/87/5 = 25/87/5 = 33 / 7 / 5 2. 91 913 = 91 + 2 x (-09) / 3 x (-09)2 / (-09)3 [Base = 100, deviation = (-09)] = 73 / 243 / (-729) = 73 /2 43 / (-729) = 75 / 43 / -729 = 754300 – 729 = 753571 3. 32 323 = 32 (32 + 2 x 2) / 3 x 3 x (2)2 / 23 [Base =10, sub-base = 3, deviation = 2] = 9 x 36/9 x 4/8 = 324 / 36 / 8 = 324 /3 6 / 8 = 327 / 6 / 8 = 32768 4. 208 2083 = 22 (208 + 2 x 8)/2 x 3 x (8)2 / (8)3 [Base = 100, sub-base = 2, deviation = 8] = 4 (224) / 384 / 512 = 896 /384 / 512 = 899 / 84 /512 = 899 / 89 / 12 = 8998912 |
|
| 62. |
In multiplication process by Urdhva Tiryagbhyam, the number of groups is known by (a) (2n – 1) (b) (2n + 2) (c) (2n + 1) (d) (2n – 2) |
|
Answer» In multiplication process by Urdhva Tiryagbhyam, the number of groups is known by (2n – 1). |
|
| 63. |
Multiply with the help of Sutra Ekanyunena Purvena(a) 8567 x 9999(b) 512 x 99 |
|
Answer» (a) 8567 x 9999 L.H.S = 8567 – 1 = 8566 R.H.S = 9999 – 8566 = 1433 ∴ 8567 x 9999 = 8567 – 1 / 9999 – 8566 = 85661433 (b) 512 x 99 L.H.S = 512 – 1 = 511 R.H.S = 99 – 511 ∴ 512 x 99 = 511 / 99 – 511 = 51199 – 511 = 50688 |
|
| 64. |
Find the square of the following numbers by Dvanda yoga method or Duplex process:(a) 53214(b) 31321 |
|
Answer» (a) 532142 = Dvanda of 5 / Dvanda of 53 / Dvanda of 532 / Dvanda of 5321 / Dvanda of 53214 / Dvanda of 3214 / Dvanda of 214 / Dvanda of 14 / Dvanda of 4 = 52 / 2 x 5 x 3 / 2 x (2 x 5) + 32 / 2 x (5 x 1) + 2 (3 x 2) / 2 (5 x 4) + 2 (3 x 1) + 22 / 2 (3 x 4) + 2 (2 x 1) / 2 x (2 x 4) + 12 / 2 x 1 x 4 / 42 = 25 / 30 / 29 / 22 / 50 / 28 / 17 / 8 / 16 = 2831729796 (b) 313212 = Dvanda of 3 / Dvanda of 13 / Dvanda of 132 / Dvanda of 3132 / Dvanda of 31321 / Dvanda of 1321 / Dvanda of 321 / Dvanda of 21 / Dvanda of 1 = 32 / 2 x 1 x 3 / 2 (1 x 2) + 32 / 2 x (3 x 2) + 2 (1 x 3) / 2 (3 x 1) + 2 (1 x 2) + 32 / 2 (1 x 1) + 2 (3 x 2) / 2 x (3 x 1) + 22 / 2 x 2 x 1 / 12 = 9/6/13/18/19/14/10/4/1 = 981005041 |
|