| 1. |
1+2ab-(a²+b²) solve |
|
Answer» Step-by-step explanation: Factorization of the expression 1-2 a B-\left(a^{2}+b^{2}\right)1−2ab−(a 2 +b 2 ) is \BOLD{(1+a+b) (1-a-b)}(1+a+b)(1−a−b) Given: 1-2 a b-\left(a^{2}+b^{2}\right)1−2ab−(a 2 +b 2 ) To Find: Factorization of 1-2 a b-\left(a^{2}+b^{2}\right)1−2ab−(a 2 +b 2 ) Solution: The given expression is, 1-2 a b-\left(a^{2}+b^{2}\right)1−2ab−(a 2 +b 2 ) Now, the above expression can be written as 1-\left(a^{2}+b^{2}+2 a b\right)1−(a 2 +b 2 +2ab) The above expression can be written as, =1-(a+b)^{2}\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]=1−(a+b) 2 [∵(a+b) 2 =a 2 +b 2 +2ab] Now, we get =(1)^{2}-(a+b)^{2}\left[\text { Since, } 1=1^{2}\right]=(1) 2 −(a+b) 2 [ Since, 1=1 2 ] Now, on EXPANDING the above EQUATION, the new expression is, =[1+(a+b)][1-(a+b)]=[1+(a+b)][1−(a+b)] Now, the equation becomes, =(1+a+b)(1-a-b)=(1+a+b)(1−a−b) |
|