InterviewSolution
| 1. |
1). 8002). 9003). 7504). 1000 |
|
Answer» Let, Cost Price of the first table = Rs. y ∴ Cost price of the other table = Rs. (1800 - y) [? Purchase price of TWO tables = Rs.1800] According the problem, Selling price of the first table = Rs. y × 4/5 Selling price of the SECOND table = Rs. ((1800 - y) × 5) /4 ∴ $(\frac{{4y}}{5}\; + \;\frac{{\left( {1800 - y} \right)\; \times \;5}}{4})$ = 1800 + 90 [? He made an overall gain of Rs. 90] Or, $(\frac{{4y}}{5} - \frac{{5y}}{4})$ = 1890 - 2250 Or, (16y - 25y) /20 = - 360 Or, - 9y = - 360 × 20 Or, y = 7200/9 ⇒ y = 800 ∴ Cost of the first table = Rs. 800 Cost of the other table = Rs. (1800 - 800) = Rs. 1000 ∴ Cost of the LESSER valued chair = Rs. 800 |
|