1.

17. If f(x) = ax^2 + bx + c has no real zeros and a +b+c0(c)c

Answer»

ANSWER:

JOIN oa



1. Pa = (pn-an) , PB = (pn+bn )



pa.Pb = (pn-an)(pn+bn)



on perpendicular ab so an = bn



pa.Pb = (pn-an)(pn+an) = pn^2-an^2



2. Pn^2-an^2 =



in ∆ona



oa^2 = on^2+an^2



an^2 = oa^2-on^2



pn^2-(oa^2-on^2)= pn^2+on^2-oa^2



in ∆ onp



op^2 = on^2+pn^2



so. Op^2- oa^2



oa= ot



pn^2-an^2= op^2-ot^2



3. From 1 & 2



pa.Pb = op^2-ot^2



in ∆ otp



op^2 = pt^2+ot^2



op^2-ot^2= pt^2



so pa.Pb = pt^2



LOG in to ADD aJoin oa



1. Pa = (pn-an) , pb = (pn+bn )



pa.Pb = (pn-an)(pn+bn)



on perpendicular ab so an = bn



pa.Pb = (pn-an)(pn+an) = pn^2-an^2



2. Pn^2-an^2 =



in ∆ona



oa^2 = on^2+an^2



an^2 = oa^2-on^2



pn^2-(oa^2-on^2)= pn^2+on^2-oa^2



in ∆ onp



op^2 = on^2+pn^2



so. Op^2- oa^2



oa= ot



pn^2-an^2= op^2-ot^2



3. From 1 & 2



pa.Pb = op^2-ot^2



in ∆ otp



op^2 = pt^2+ot^2



op^2-ot^2= pt^2



so pa.Pb = pt^2



log in to add aJoin oa



1. Pa = (pn-an) , pb = (pn+bn )



pa.Pb = (pn-an)(pn+bn)



on perpendicular ab so an = bn



pa.Pb = (pn-an)(pn+an) = pn^2-an^2



2. Pn^2-an^2 =



in ∆ona



oa^2 = on^2+an^2



an^2 = oa^2-on^2



pn^2-(oa^2-on^2)= pn^2+on^2-oa^2



in ∆ onp



op^2 = on^2+pn^2



so. Op^2- oa^2



oa= ot



pn^2-an^2= op^2-ot^2



3. From 1 & 2



pa.Pb = op^2-ot^2



in ∆ otp



op^2 = pt^2+ot^2



op^2-ot^2= pt^2



so pa.Pb = pt^2



log in to add a

Explanation:

Join oa



1. Pa = (pn-an) , pb = (pn+bn )



pa.Pb = (pn-an)(pn+bn)



on perpendicular ab so an = bn



pa.Pb = (pn-an)(pn+an) = pn^2-an^2



2. Pn^2-an^2 =



in ∆ona



oa^2 = on^2+an^2



an^2 = oa^2-on^2



pn^2-(oa^2-on^2)= pn^2+on^2-oa^2



in ∆ onp



op^2 = on^2+pn^2



so. Op^2- oa^2



oa= ot



pn^2-an^2= op^2-ot^2



3. From 1 & 2



pa.Pb = op^2-ot^2



in ∆ otp



op^2 = pt^2+ot^2



op^2-ot^2= pt^2



so pa.Pb = pt^2



log in to add aJoin oa



1. Pa = (pn-an) , pb = (pn+bn )



pa.Pb = (pn-an)(pn+bn)



on perpendicular ab so an = bn



pa.Pb = (pn-an)(pn+an) = pn^2-an^2



2. Pn^2-an^2 =



in ∆ona



oa^2 = on^2+an^2



an^2 = oa^2-on^2



pn^2-(oa^2-on^2)= pn^2+on^2-oa^2



in ∆ onp



op^2 = on^2+pn^2



so. Op^2- oa^2



oa= ot



pn^2-an^2= op^2-ot^2



3. From 1 & 2



pa.Pb = op^2-ot^2



in ∆ otp



op^2 = pt^2+ot^2



op^2-ot^2= pt^2



so pa.Pb = pt^2



log in to add a



Discussion

No Comment Found

Related InterviewSolutions