1.

1g of a monabasic acid when dissolved in 100g of water lowers the freezing point by 0.168^(@)C. 0.2g of the same acid when dissolved and titrated required 15.1mL of N//10 alkali . Calculate the degree of dissociation of the acid. (K_(f) for water is 1.86)

Answer»

Solution :Milliequivalent of alkali (m.e.) `=(1)/(10)xx15.1=1.51` (Eqn. 1, Chapter 7)
m.e. of the ACID `=1.51` (Eqn. 2 , Chapter 7)
`:.` eq. of acid `=(1.51)/(1000)=0.00151` (Eqn.3, Chapter 7)
Now equivalent of acid `=("weight in grams")/("equivalent weight")`
`=(0.2)/("eq.wt.")`
`=(0.2)/(M)` [for monobasic acid , eq. wt. =MOL. wt. (M)]
`:.(0.2)/(M)=0.00151`, `M=132.45`
`:.` MOLALITY of the acid (m)= `("moles of solute")/("wt. of solvent in grams")xx1000`
`=(1)/(132.45)xx(1000)/(100)=0.076`
We have, `(DeltaT_(f))_("normal")=K_(f).m`
`=1.86xx0.076=0.141`
`:.i=((DeltaT_(f))_("observed"))/((DeltaT_(f))_("normal"))`.......(Eqn 9)
`=(0.168)/(0.141)=1.19`
The monobasic acid (say AH) ionises as
moles before diss : `{:(1"mole",,,,0,,,,0),(AH,,=,,A^(-),,+,,H^(+)):}`
moles after diss : `{:((1-x),,x,,x,,(x="degree of dissociation")):}`
`i=(1-x+x+x)/(1)=1.19` ..............(Eqn 10)
`:.x=0.19`


Discussion

No Comment Found