1.

1ху8. If 2x + 1 = 3 - then find the value of x.31-*​

Answer»

-step explanation:If 2^(x+1) = 3^(1-x) Then find the VALUE of 'x'?Let 2^( x + 1 ) - 3^( 1 - x ) = 0 be EQUATION(1).Take Logs of both sides of Equation(1).LOG[ 2^( x + 1 ) ] - Log[ 3^( 1- x ) ] = 0 Equation(2).Rearranging Equation(2).( x + 1 )Log( 2 ) - ( 1 - x )Log( 3 ) = 0 or( x + 1 )Log( 2 ) = ( 1 - x )Log( 3 ) or( x + 1 )/( 1 - x ) = Log( 3 )/Log ( 2 ) or( x + 1 )/( 1 - x ) = 1.584962501 Equation(3).Therefore( x + 1 ) = ( 1.584962501 )•( 1 - x ) ORX + ( 1.584962501x ) = ( 1.584962501 - 1 ) or( 2.584962501 )x = ( 0.584962501 ) orx = ( 0.584962501 )/( 2.584962501 ) orx = 0.2262943856Check2^( x+1 ) = 3^( 1-x )2^( 1.2262943856 ) = 3^( 1 - 0.2262943856 )2^( 1,2262943856 ) = 3^( 0.7737056 )2.33965269 = 2.33965268



Discussion

No Comment Found