| 1. |
2√ 4√ 20−−√ 25−−√ Explain a strategy for classifying each radical as rational or irrational. |
|
Answer» Whole numbers\greenD{\TEXT{Whole numbers}}Whole numbersstart color #1fab54, start text, W, h, o, l, e, space, n, u, m, b, e, R, s, end text, end color #1fab54 are numbers that do not need to be represented with a fraction or decimal. Also, whole numbers cannot be negative. In other words, whole numbers are the COUNTING numbers and zero.Examples of whole numbers:4, 952, 0, 734,952,0,734, comma, 952, comma, 0, comma, 73Integers\blueD{\text{Integers}}Integersstart color #11accd, start text, I, n, t, e, g, e, r, s, end text, end color #11accd are whole numbers and their opposites. Therefore, integers can be negative.Examples of integers:12, 0, -9, -81012,0,−9,−81012, comma, 0, comma, minus, 9, comma, minus, 810Rational numbers\purpleD{\text{Rational numbers}}Rational numbersstart color #7854ab, start text, R, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end text, end color #7854ab are numbers that can be expressed as a fraction of two integers.Examples of rational numbers:44, 0.\overline{12}, -\dfrac{18}5,\sqrt{36}44,0. 12 ,− 518 , 36 44, comma, 0, point, start overline, 12, end overline, comma, minus, start fraction, 18, DIVIDED by, 5, end fraction, comma, square root of, 36, end square rootIrrational numbers\maroonD{\text{Irrational numbers}}Irrational numbersstart color #ca337c, start text, I, r, r, a, t, i, o, n, a, l, space, n, u, m, b, e, r, s, end text, end color #ca337c are numbers that cannot be expressed as a fraction of two integers.Examples of irrational numbers:-4\pi, \sqrt{3}−4π, 3 |
|