1.

2) Prove that 3 + 5 is an irrational number.​

Answer»

Answer:

Kindly allow me a minute or two ⌚ to check for relevant answers to your question. Please be online.

√3 + √5 = a/b

On squaring both sides we get,

(√3 + √5)² = (a/b)²

√3² + √5² + 2(√5)(√3) = a²/b²

3 + 5 + 2√15 = a²/b²

8 + 2√15 = a²/b²

2√15 = a²/b² – 8

√15 = (a²- 8b²)/2b

a, b are integers then (a²-8b²)/2b is a RATIONAL number.

Then √15 is also a rational number.

But this contradicts the fact that √15 is an irrational number.

Our assumption is incorrect

√3 + √5 is an irrational number.

Hence, proved.

Step-by-step explanation:

hope u have been UNDERSTOOD mark me as BRAINLIST



Discussion

No Comment Found

Related InterviewSolutions