1.

`2tanx-cotx+1=0`

Answer» Correct Answer - `x=npi+(3pi)/(4)orx=mpi+(-1)^(n)(pi)/(2),"where m "ninI`
The given equations is
`2tan^(2)x+tanx-1=0`
`rArr(tanx+1)(2tanx-1)=0`
`rArrtanx=-1ortanx=(1)/(2)`
`rArrtanx="tan"(3pi)/(4)ortanx=tan("tan"^(-1)(1)/(2))`
`rArrx=npi+(3pi)/(4)orx=mpi+"tan"^(-1)(1)/(2), "where m "n in I`.


Discussion

No Comment Found