1.

\(^3\sqrt{a}\) + \(^3\sqrt{b}\) + \(^3\sqrt{c}\) = 0 then (a + b + c)3 =................(A) 3 abc (B) 9 abc (C) 27 abc (D) 81 abc

Answer»

Correct option is (C) 27 abc

We have \(\sqrt[3]a+\sqrt[3]b+ \sqrt[3]c=0\)

\(\Rightarrow\) \(a^\frac13+b^\frac13+c^\frac13=0\)

\(\Rightarrow\) \(a^\frac13+b^\frac13=-c^\frac13\)    ___________(1)

\(\Rightarrow\) \((a^\frac13+b^\frac13)^3=(-c^\frac13)^3\)  (By cubing both sides)

\(\Rightarrow(a^\frac13)^3+(b^\frac13)^3+3a^\frac13b^\frac13(a^\frac13+b^\frac13)=-(c^\frac13)^3\)  \((\because(a+b)^3=a^3+b^3+3ab(a+b)\,\&\,(ab)^3=a^3b^3)\)

\(\Rightarrow a+b+3\,a^\frac13\,b^\frac13\times-c^\frac13=-c\)   (From (1))

\(\Rightarrow\) a+b+c \(=3\,a^\frac13\,b^\frac13c^\frac13\)

\(\Rightarrow\) \((a+b+c)^3\) \(=(3\,a^\frac13\,b^\frac13c^\frac13)^3\)   (By cubing both sides)

\(\Rightarrow\) \((a+b+c)^3=27\,abc\)    \((\because(ab)^m=a^mb^m)\)

Correct option is (C) 27 abc



Discussion

No Comment Found