Saved Bookmarks
| 1. |
`3e^(x) tan y dx + (1+e^(x)) sec^(2) dy =0 , " when" x = 0 and y = pi` |
|
Answer» `3e^(x) tan y dx+(1_e^(x))sec^(2)y dy=0` On separating the variables, we get `3e^(x)tany dx = -(1+e^(x))sec^(2)ydy` `(3e^(x))/(1+e^(x))dx=-(sec^(2)y)/(tany)dy` On integrating, we get `3int(e^(x))/(1+e^(x))dx=-int(sec^(2)y)/(tany)dy` Let `1+e^(x)=t rArr e^(x)dx=dt` and `tan y = v rArr sec^(2)y dy = dv` `rArr" "3int(1)/(t)dt=-int(1)/(v)dv` `rArr" "3log|t|=-log|v|+log|c|` `rArr" "log|t|^(3)+log|v|=log|c|` `rArr" "logt^(3).v=logc` `rArr" "(1+e^(x))^(3).tany=c` Which is the required general equation Now, when x = 0 and `y=pi`, we get `(1+e^(0))^(3).tanpi =c` `(2)^(3).0=c rArr c=0` Hence proved. |
|