Saved Bookmarks
| 1. |
`sinxtanx-1=tanx-sinx` |
|
Answer» `sinx. Tanx = tanx-sinx+1` `rArr sinx. Tanx-tanx+sinx-1=0` `rArr tan x(sinx-1)+1(sinx-1)=0` `rArr (sinx-1)(tanx+1)=0` `rArr sin x-1=0 or tan x+1=0` `rArr sin x= 1 " or "tanx=-1` `rArr sin x=sin.(pi)/(2)" or "tanx=-tan.(pi)/(4)` `rArr sin x=sin.(pi)/(2)" or "tanx=tan(pi-(pi)/(4))` `rArr sin x=sin.(pi)/(2)" or "tanx=tan.(3pi)/(4)` `therefore" "alpha_(1)=(pi)/(2)" or "alpha_(2)=(3pi)/(4)` `therefore" "` The general solution are `theta = npi +(-1)^(n).(pi)/(2)` |
|