1.

3x^2+2y^2 + -×^2-4y^2​

Answer»

Input EXPRESSION

\bf  {3x}^{2}  +  {2y}^{2}  +   { - x}^{2}  -  {4y}^{2}

CALCULATES result

\bf 2x \: (x - y) \: (x + y)

Solving equation for x

\bf  {3x}^{2}  +  {2y}^{2}  +  { - x}^{2}  +  {4y}^{2}  = 0 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \bf  \:  \:  \:  \big[  y =  - x   \big] \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \bf  \:  \:  \:  \big[  y =  x   \big]

Graph

simplify

\bf 2 \times ( {x}^{2}  -  {y}^{2} )

Expand

\bf  {2x}^{2}  -  {2y}^{2}

Factor

\bf  - 2 \times ( - x + y)( x + y)

Alternative form

\bf  - 2(  { - x}^{2}  +  {y}^{2} )

Polynomial discrimination with respect to x

\bf \triangle  =  {16y}^{2}

PARTIAL derivative with respect to x

\bf  \frac{d}{d[ x] }  \bigg[  {3x}^{2}  +  {2y}^{2} +  { - x}^{2}  -  {4y}^{2}   \bigg]  = 4x

Partial derivative with respect to Y

\bf  \frac{d}{d[y ] }  \bigg[ {3x}^{2}  +  {2y}^{2}   +  { - x}^{2}  -  {4y}^{2}  \bigg]  =  - 4y



Discussion

No Comment Found