| 1. |
5. Using the information in the figure, find the magnitudeof each of the angles given below.a. BÃEb. CBAc. CBEGuys pls help me out fast |
Answer» Given:-∠BEA = 32° ∠BEC = 27° and ∠EDB = 105° To find:-a) ∠BAE, b) ∠CBA and c) ∠CBE Solution:-a) ∠EDB = 1/2 arc(BAE) ....(inscribed angle)
105 = 1/2 arc(BAE)
105 × 2 = arc(BAE) 210° = arc(BAE) ...... (1) now,arc(BCDE) + arc(BAE) = 360° ....(full circle) arc(BCDE) + 210 = 360 arc(BCDE) = 360 - 210 arc(BCDE) = 150° ......(2) now,
∠BAE = 1/2 arc(BCDE) ....(inscribed angle) ∠BAE = 1/2 × 150 ∠BAE = 75° .....(3) b) ∠BEA = 1/2 arc(AB) 32° = 1/2 arc(AB) 32 × 2 = arc(AB)
64° = arc(AB) .....(4) And,∠BEC = 1/2 × arc(BC) ....(inscribed angle) 27 = 1/2 arc(BC) 54° = arc(BC) ......(5) now,
arc(AB) + arc(BC) + arc(AEDC) = 360° ...(full circle) arc(ABC) + arc(AEDC) = 360° 64 + 54 + arc(AEDC) = 360 118 + arc(AEDC) = 360 arc(AEDC) = 360 - 118 arc(AEDC) = 242° .....(6) now, ∠CBA = 1/2 arc(AEDC) ∠CBA = 1/2 × 242
∠CBA = 121° .......(7) c)
arc(BC) + arc(BAE) + arc(CDE) = 360° ....(from 1 and 5) 54 + 210 + arc(CDE) = 360 264 + arc(CDE) = 360 arc(CDE) = 360 - 264 arc(CDE) = 96° .....(8) now,
∠CBE = 1/2 arc(CDE) ....inscribed angle ∠CBE = 1/2 × 96 ∠CBE = 48° ...... (9)
a) ∠BAE = 75°, b) ∠ CBA = 121° and c) ∠CBE = 48°
|
|