1.

6 In the Fig. given below, LQ > ZR, PA is the bisector of LQPR and PM 1 QR. Prove thatZAPM = (ZQ - _R).RM​

Answer»

ANSWER

In△PAQ

Sumoftwooppositeinteriorangles=Exteriorangle

α=θ+∠θ−(i)

In△PAR

α+θ+∠R=180

α=180

−θ−∠R−(II)

In△PMQ

∠MPQ=180−∠Q−90

=90−∠Q

∠APM=∠APQ−∠MPQ

=θ−(90−∠Q)

=θ+∠Q−90

−(III)

∵(i)=(ii)

=>θ+∠Q=180−θ−∠R

=>2θ=180−∠Q−∠R

=>θ=90−

2

1

(∠Q+∠R)

puttingthisvalueofθin(iii)

∠APM=∠Q+90−

2

1

(∠Q+∠R)−90

=

2

∠Q

2

∠R

=

2

1

(∠Q−∠R)

∴a=2



Discussion

No Comment Found

Related InterviewSolutions