1.

8. If a=10 and d=3 for an A.P. find the*sum of the first 15 terms.Your answer​

Answer»

Answer:

\huge \boxed{s_{15} = 465}

Step-by-step EXPLANATION:

Given:-

To Find:-

s_{15} \: (sum \: of \: 15 \: terms)

Formula Used:-

s_{n} =  \frac{n}{2}  \times [2a + (n - 1) \times d]

SOLUTION:-

s_{n} =  \frac{n}{2}  \times [2a + (n - 1) \times d] \: ,where \: \boxed{a = 10}, \: \boxed{d = 3} \: and \:  \boxed{ n = 15}

\implies s_{15} =  \frac{15}{2} [2(10) + (15 - 1)(3)]

\implies s_{15} =  \frac{15}{2} [2(10) + (14)(3)]

\implies s_{15} =  \frac{15}{2} \times 2 [10 + (7)(3)]

\implies s_{15} = 15 (10 + 21)

\implies s_{15} = 15  \times 31

\implies \boxed{s_{15} = 465}

THEREFORE,

Therefore,The Sum of 15 terms of this A.P. is 465.

One More formula to Remember:-

a_n = a + ( n- 1) \times d



Discussion

No Comment Found

Related InterviewSolutions