InterviewSolution
| 1. |
8. In the following figure, angle ACB = angle AQP and AP is x cm.ci. Find x.ii. Find the length of QP.iii. Find the ratio between area of quadrilateral QPCB and area of triangle AQP. p |
|
Answer» i. 5cm ii. 5cm iii. 1:8 Step-by-step EXPLANATION: In tri ABC and tri AQP ang PAQ=ang CAB[Common] ang ACB=ang AQP[Given] So, ang APQ=ang ABC[3rd ang] hence, tri AQP ~ tri ACB [By AAA axiom] By Similarity, QP/BC=AP/AB=AQ/AC so, QP/15=x/15=3/x+4 so, x/15=3/x+4 so, x(x+4)=15×3=45 so, x^2+4x-45=0 so, x^2+(9-5)x-45=0 so, x(x+9)-5(x+9)=0 so, (x+9)(x-5)=0 so, either x=-9 or x=5 As length cannot be negative so x= 5cm [Ans..i] so, QP/15=5/15 so, QP=5cm [Ans..ii] AR tri AQP= 1/2×5×5=12.5cm^2 ar tri ABC=1/2×15×15=112.5cm^2 so, ar QUAD QPCB= 112.5-12.5=100cm^2 hence, ar quad QPCB:ar tri AQP =100/12.5 =1/8 so, ratio =1:8 [Ans..iii]
|
|