1.

A 20 Liters Mixture Of Milk And Water Comprising 60% Pure Milk Is Mixed With "x" Liters Of Pure Milk. The New Mixture Comprises 80% Milk. What Is The Value Of "x"?

Answer»

Original mixture comprises 20 liters of milk and water.

Out of the 20 liters, 60% is pure milk.

=> (60 / 100) x 20 = pure milk

=> 12 liters = pure milk

In 20 liters mixture remaining 8 liters = water

When "x" liters of pure milk is added to 20 liters of mixture

New mixture = (20 + x) liters

Milk in new mixture = (12 + x) liters

Given milk in new mixture = 80% of (20 + x)

=> 12 + x = (80 / 100) * (20 + x)

=> 12 + x = (4 / 5) * (20 + x)

=> 5 (12 + x) = 4 (20 + x)

=> 60 + 5 x = 80 + 4 x

=> 5 x - 4 x = 80 - 60

=> x = 20 liters

Original mixture comprises 20 liters of milk and water.

Out of the 20 liters, 60% is pure milk.

=> (60 / 100) x 20 = pure milk

=> 12 liters = pure milk

In 20 liters mixture remaining 8 liters = water

When "x" liters of pure milk is added to 20 liters of mixture

New mixture = (20 + x) liters

Milk in new mixture = (12 + x) liters

Given milk in new mixture = 80% of (20 + x)

=> 12 + x = (80 / 100) * (20 + x)

=> 12 + x = (4 / 5) * (20 + x)

=> 5 (12 + x) = 4 (20 + x)

=> 60 + 5 x = 80 + 4 x

=> 5 x - 4 x = 80 - 60

=> x = 20 liters



Discussion

No Comment Found