InterviewSolution
Saved Bookmarks
| 1. |
A and B are different matrices of order n satisfying `A^(3)=B^(3)` and `A^(2)B=B^(2)A`. If det. `(A-B) ne 0`, then find the value of det. `(A^(2)+B^(2))`. |
|
Answer» `(A^(2)+B^(2))(A-B)=A^(3)-A^(2)B+B^(2)A-B^(3)=O` `:.` det. `[(A^(2)+B^(2))(A-B)]=0` `implies` det. `(A^(2)+B^(2))xx`det. `(A-B)=0` `implies` det. `(A^(2)+B^(2))=0` (as det. `(A-B) ne0`) |
|