

InterviewSolution
Saved Bookmarks
1. |
`A` and `B` be `3xx3` matrices such that `AB+A=0`, thenA. `(A+B)^(2)=A^(2)+2AB+B^(2)`B. `|A|=|B|`C. `A^(2)=B^(2)`D. none of these |
Answer» Correct Answer - A `(a)` Given `AB+A+B=0` `impliesAB+A+B+I=I` `impliesA(B+I)+(B+I)=(` `implies(A+I)(B+I)=I` `implies (A+I)` and `(B+I)` are inverse of each other `implies(A+I)(B+I)=(B+I)(A+I)` `impliesAB=BA` Thus `A` and `B` are commutative `implies(A+B)^(2)=A^(2)+2AB+B^(2)` |
|