1.

`A B C D`is parallelogram and `P`is the point of intersection of its diagonals. If `O`is the origin of reference, show that ` vec O A+ vec O B+ vec O C+ vec O D=4 vec O Pdot`

Answer» Please refer to video to see the vector diagram for the given details.
From the diagram,`vec(OD) + vec(DP) = vec(OP)`
`vec(OA) + vec(AP) = vec(OP)`
`vec(OB) + vec(BP) = vec(OP)`
`vec(OC) + vec(CP) = vec(OP)`
`:. vec(OD) + vec(DP)+vec(OA) + vec(AP)+vec(OB) + vec(BP)+vec(OC) + vec(CP) = 4vec(OP)`
`=>vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(AP)+vec(CP)+vec(BP)+vec(DP) = 4vec(OP)->(1)`
Also, from the diagram, we can see that,
`vec(PA)+vec(PC) = 0`
`vec(PD)+vec(PB) = 0`
So, equation (1) becomes,
`=>vec(OA)+vec(OB)+vec(OC)+vec(OD) + 0 + 0 = 4vec(OP)`
`=>vec(OA)+vec(OB)+vec(OC)+vec(OD) = 4vec(OP)`


Discussion

No Comment Found

Related InterviewSolutions