

InterviewSolution
Saved Bookmarks
1. |
A body is displaced from prigin to (1m,1m) by force `F=(2yhati + 3x^(2)hatj)` along two paths (a) `x=y` (b) `y=x^(2)` Find the work done along both paths. |
Answer» `F=(2yhati + 3x^(2)hatj)` `dr=(dxhati + dyhatj)` `F.dr=(2ydx + 3x^(2)dy)` We cannot integrate F.dr or `(2ydx + 3x^(2)dy)` as such to find the work done. But along the given paths we can change this expression. (a) Along the path `x = y` `(2y dx + 3x^(2)dy) = (2x dx + 3y^(2)dy)` `W_(1) = int_(0,0)^(1m,1m,)F.dr =int_(0,0)^(1m,1m)(2xdx + 3y^(2)dy)` `=[x^(2) + y^(3)] _(0,0)^(1m,1m)` `=(1)^(2) + (1)^(3)=2J` (b) Along the path `y=x^(2)` `(2ydx + 3x^(2)dy) =(2x^(2)dx + 3ydy)` `:. W=(2)=int_(0,0)^(1m,1m)F.df =int(2x^(2)dx + 3y dy)` `=[2/3x^3 + 3/2y^(2)]_(0,0)^(1m,1m)` `=(13)/6 J` |
|