InterviewSolution
Saved Bookmarks
| 1. |
A body is moved along a straight line by a machine delivering constant power . The distance moved by the body is time `t` is proptional toA. `t^(1//2)`B. `t^(3//4)`C. `t^(3//2)`D. `t^(1//4)` |
|
Answer» Correct Answer - C Here, power `P = F.v = (m (dv)/(dt)).v` `rArr vdv = (P)/(m) dt` Noe integrating, `int_(0)^(v) vdv = (P)/(m) int_(0)^(t) dt` `rArr (v^(2))/(2) = (Pt)/(m)` or `v = ((2Pt)/(m))^((1)/(2))` `rArr (dx)/(dt) = ((2P)/(m))^((1)/(2)) t^((1)/(2))` `rArr dx =((2P)/(m))^((1)/(2))t^((1)/(2)) dt` Integrating, we get `underset(0) overset(x) int dx = ((2P)/(m))^((1)/(2)) underset(0) overset(t) int t^((1)/(2)) dt` or `x = ((2P)/(m))^((1)/(2)) (t^((3)/(2)))/((3)/(2))` or `x prop t^((3)/(2))`. |
|