1.

A body rotates about a stationary axis. If the angular deceleration is proportional to square root of angular speed, then the mean angularspeed of the body, givenomega_0 as the initial angular speed, is

Answer»

`(omega_0)/(sqrt2)`
`(omega_0)/(4)`
`(omega_0)/(2) `
`(omega_0)/(3)`

Solution : Given,
angular deceleration `prop sqrt("angular SPEED")` i.e.,` (- d omega)/(DT) prop sqrt (omega) `
or`(-d omega )/(dt) = K sqrt(omega )` where, k is constant
or` - int_(omega_0)^(omega) (d omega)/(sqrt (omega)) = k int_(0)^(t) dt `
`- [2 sqrt(omega)]_(omega_0)^(omega) = k [t]_(0)^(t) `
`rArr - 2[ sqrt(omega) - sqrt(omega_0) ] =kt `
`sqrt(omega) - sqrt(omega_0) =- (kt)/(2)`
`rArrsqrt(omega) = sqrt(omega_0) - (kt)/(2) "" ...(i)`
When then the total TIME of rotation,
` tau = t = (2 sqrt( omega_0) )/(k)`
` therefore ` Mean angular speed,
`< baromega > = (int omega dt )/(int dt) = ( int_(0)^(2 sqrt(omega_0) // k) ( omega_0 + (k^2 t^2)/(4) - kt sqrt(omega_0) dt ))/(2 sqrt(omega_0) // k )`
` = ( [ omega_0 t + (k^2 t^3)/(12) - k/2 sqrt(omega_0) t^2 ]_(0)^(2sqrt(omega_0) // k) )/(2 sqrt(omega_0) // k ) `
After SOLVING , we get ` = (omega_0)/(3)`


Discussion

No Comment Found

Related InterviewSolutions