InterviewSolution
Saved Bookmarks
| 1. |
a) Calculate the packing efficiency of particles in a body centred cube. |
|
Answer» Solution :The number of atoms per unit cell in bcc structure is two. Each atom is considered as one sphere. Let the edge length of the unit cell = a Radius of the sphere = r Length of the body diagonal = c Length of the body diagonal = B In `DeltaEFD` `FD^(2)=EF^(2)+DE^(2)` `b^(2)=a^(2)+a^(2)=2a^(2)` Now in `DeltaAFD` `AF^(2)=AD^(2)+FD^(2)` Now in `DeltaAFD` `AF^(2)=AD^(2)+FD^(2)` `c^(2)=a^(2)+b^(2)` `c^(2)=a^(2)+2a^(2)=3a^(2)` `c =sqrt3a` `W.K.T c=4r` Therefore `=4r=sqrt3a` `a=(4r)/(SQRT3)` `"Total volume of the unit cell "= a^(3) = ((4r)/(sqrt3))^(3)` Since bcc LATTICE contains 2 atoms per unit cell `"Volume of two spheres "=2 xx(4)/(3)pir^(3)` `"Packing efficiency "= ("Volume of the two spheres in unit cell")/("Total volume of the unit cell")xx100%` `=(2xx(4)/(3)pir^(3))/(((4r)/(sqrt3))^(3))xx100%` `=((8)/(3)pir^(3))/((64)/(3SQRT3)r^(3))xx100=68%` |
|