1.

A capacitor of 1 muF and resistance 82 kOmegaare connected is series with a d.c. source of 100 volt. Calculate the magnitude of energy and the time in which energy stored in the capacitor will reach half of its maximum value.

Answer»

Solution :i) Maximum energy stored `=(CV_0^2)/(2)`
Energy stored `ALPHA V_0^2`
Half of maximum will be stored when voltage across capacitor is
`V=(100//sqrt2)` volt = 70.7 Volt
Energy stored
`=1/2 CV^2 = 1/2 xx(1xx10^(-6)) xx (70.7)^2 = 0.0025 J`
II) `(V_0)/(sqrt2) = V_0 (1- E^(-t//RC))`
or , `70.7 =100 [1-e^(-t//(82xx10^3 xx 10^(-6)))]`
or , `70.7 = 100[1-e^(t//0.082)]`
or, `e^(-t//0.082) = 1-(70.7)/(100) = 0.293`
or, `e^(t//0.082) = 3.413`
`therefore t= 0.082 log_e = 3.413 = 0 ` SEC.


Discussion

No Comment Found

Related InterviewSolutions