1.

A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is (i) a black king (ii) either a black card or a king (iii) black and a king (iv) a jack, queen or a king (v) neither a heart nor a king (vi) spade or an ace (vii) neither an ace nor a king (viii) neither a red card nor a queen. (ix) other than an ace (x) a ten (xi) a spade (xii) a black card (xiii) the seven of clubs (xiv) jack (xv) the ace of spades (xvi) a queen (xvii) a heart (xviii) a red card (xix) neither a king nor a queen

Answer»

Total number of outcomes, n(S) = 52 

(i) n(E) = 2

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{2}{52}\) = \(\frac{1}{26}\)

(ii) n(E) = 26 + 2 = 28

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{28}{52}\) = \(\frac{7}{13}\)

(iii) n(E) = 2

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{2}{52}\) = \(\frac{1}{26}\)

(iv) n(E) = 12

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{12}{52}\) = \(\frac{3}{13}\)

(v) n(E) = 36

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{36}{52}\) = \(\frac{9}{13}\)

(vi) n(E) = 16

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{16}{52}\) = \(\frac{4}{13}\)

(vii) n(E) = 44

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{44}{52}\)

(viii) n(E) = 24

 ∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{24}{52}\) = \(\frac{6}{13}\)

(ix) n(E) = 48

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{48}{52}\) = \(\frac{12}{13}\)

(x) n(E) = 4

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{4}{52}\) = \(\frac{1}{13}\)

(xi) n(E) = 13

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{13}{52}\) = \(\frac{1}{4}\)

(xii) n(E) = 26

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{26}{52}\) = \(\frac{1}{2}\)

(xiii) n(E) = 1

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{1}{52}\)

(xiv) n(E) = 4

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{4}{52}\) = \(\frac{1}{13}\)

(xv) n(E) = 1

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{1}{52}\)

 (xvi) n(E) = 4

 ∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{4}{52}\) = \(\frac{1}{13}\)

(xvii) n(E) = 13

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{13}{52}\) = \(\frac{1}{4}\)

(xviii) n(E) = 26

∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{26}{52}\) = \(\frac{1}{2}\)

(xix) n(E) = 44

 ∴ P(E) = \(\frac{n(E)}{n(S)}\) = \(\frac{44}{52}\) = \(\frac{11}{13}\)



Discussion

No Comment Found

Related InterviewSolutions