1.

A charge is distributeduniformly overa ringof radius'a'Obtain anexpressionfor theelectricintensityE at apointon theaxisof thering . Henceshow thatforpointa lergedistancefrom theringitbehaves likea pointcharge .

Answer»

Solution : Suppose that theringis placed withits planeperpendicularto thex-axisas shown in Fig. Consider asmallelementdl of the ring .

Asthe totalchargeq isuniformlydistributedthe charge dq on the elementdl isdq `=(Q)/(2pia) .dl`
`:.` Themagnitudeof thefieldd `bar(E)` produced bytheelementdlat thefieldpoint P is
`bar(DE) =k .(dq)/(r^(2)) =(kq)/(2pia) .(dl)/(r^(2))`
Thefield `dbar(E)` has twocomponents
(a) the axialcomponent dEcos `theta` , and
(b)the perpendicularcomponentdEsin `theta`
Sincethe perpendicularcomponentsof any twodiametricallyoppositeelements are equalandoppositethey allcancelout inpairs.Onlythe axialcomponents will addup toproducethe resultantfield `bar(E)` at pointP whichis givenby
`E = overset(2pia)underset(0)(int) dE " cos" theta""[:' "onlythe axialcomponentscontributetowards" E]`
`=overset(2pia)underset(0)(int) (kq)/(2pia) ,(dl)/(r^(2)).(X)/(r ) =(kpx)/(2pia) .(1)/(r^(3)) overset(2pia)underset(0)(int) dl`
`=(kpx)/(2pia).(1)/(r^(3)) [l]_(0)^(2pia) =(kpx)/(2pia).(1)/((x^(2)+a^(2))^(3//2)).2pia ""[:' r^(2) =x^(2) +a^(2)]`
`"or"""E =(kpx)/((x^(2) +a^(2))^(3//2))=(1)/(4piepsilon_(0)).(qx)/((x^(2) +a^(2))^(3//2))` LTBGT `" if" ""x gt gt a`
`x^(2) +a^(2) ~~x^(2)`
`E =(1)/(4pi epsilon_(0)) .(qx)/(x^(3)) rArr E=(1)/(4piepsilon_(0)).(q)/(x^(2))`
i.e., Whenthe pointis FARAWAY from thecentrecharged ringacts likea pointcharge .


Discussion

No Comment Found

Related InterviewSolutions