

InterviewSolution
Saved Bookmarks
1. |
A constant power `P` is applied to a particle of mass `m`. The distance traveled by the particle when its velocity increases from `v_(1)` to `v_(2)` is (neglect friction):A. `(m)/(3P) (v_(2)^(3) - v_(1)^(3))`B. `(m)/(3P) (v_(2) - v_(1))`C. `(3P)/(m) (v_(2)^(2) - v_(1)^(2))`D. `(m)/(3P) (v_(2)^(2) - v_(1)^(2))` |
Answer» Correct Answer - A `P=F_(v) =mav rArr a=(P)/(mv)` `rArr v(dv)/(ds) =(P)/(mv) rArr v^(2) dv =(P)/(m) ds` `rArr (P)/(m) int_(0)^(s) ds =int_(v1)^(v2)v^(2) dv rArr (P)/(m) s =(1)/(3) (v_(2)^(3) -v_(1)^(3))` `rArr s=(m)/(3P) (v_(2)^(3) -v_(1)^(2))`. |
|