1.

A copper wire of 10^(-6)m^(2) are of cross section, carries a current of 2A. If the number of electrons per cubic meter is 8xx10^(28), calculate the current density and average drift velocity.

Answer»

Solution : Cross-sections area of copper wire, A -=`10^(-6)m^(2)`
1 = 2A
Number of electron, n = `8xx10^(28)`
Current density, J= `(1)/(A)=(2)/(10^(-6))`
J=`2xx10^(6)Àm^(-2)`
AVERAGE drift velocity, `V_(d)=(1)/(n EA)`
e is the charge of electron = `1.6xx10^(-9)C`
`V_(d)=(2)/(8xx10^(28)xx1.6xx10^(-19)xx10^(-6))=(1)/(64xx10^(3))`
`V_(d)=0.15625xx10^(-3)`,`V_(d)=15.6xx10^(-5)MS^(-1)`


Discussion

No Comment Found

Related InterviewSolutions