1.

A narrow monochromatic X-ray beam falls on a scattering substance. The wavelengths of radiation scattered at angles theta_(1) = 60^(@) and theta_(2) = 120^(@) differ by a factor eta = 2.0. Assuming the free electrons to be responsible for the scattering, find the incident radiation wave length.

Answer»

Solution :Let `lambda_(0) =` WAVELENGTH of the INCIDENT radiation. Then
wavelength of the radiation scattened at `theta_(1) = 60^(@)`
`= lambda_(1) = lambda_(0)+2pi cancel lambda_(c) (1-cos theta_(1))` where `cancel lambda_(c) = (cancelh)/(mc)`.
and similarly
`lambda_(2)= lambda_(0) + 2pi cancel lambda_(c) (1- cos theta_(2))`
From the data `theta_(1) = 60^(@), theta_(2) = 120^(@)` and
`lambda_(2) = eta lambda_(1)`
Thus `(eta - 1) lambda_(0) = 2pi cancel lambda_(c) [1-cos theta_(2) - eta (1-cos theta_(1))]`
`= 2pi cancel lambda_(c) [1-eta +etacos theta_(1) - cos theta_(2)]`
Hence `lambda_(0) = 2pi cancel lambda_(c) [(eta cos theta_(1) - cos theta_(2))/(eta - 1)-1]`
`= 4pi cancel lambda_(c) [(sin^(2)theta_(2)//2 - eta sin^(2) theta_(1)//2)/(eta - 1)] = 1.21 pm`.
The expression `lambda_(0)` given in the bok contains MISPRINTS.


Discussion

No Comment Found

Related InterviewSolutions