

InterviewSolution
Saved Bookmarks
1. |
A park, in the shape of quadrilateral ABCD ,has Angle C = 90 degree , AB = 9 m , BC = 12 m, CD = 5m and AD = 8 m. how much area does it occupy. |
Answer» <html><body><p><strong>Answer:</strong></p><p>Join BD in ΔBCD, BC and DC are <a href="https://interviewquestions.tuteehub.com/tag/given-473447" style="font-weight:bold;" target="_blank" title="Click to know more about GIVEN">GIVEN</a>. </p><p></p><p>So, we can calculate BD by <a href="https://interviewquestions.tuteehub.com/tag/applying-1982651" style="font-weight:bold;" target="_blank" title="Click to know more about APPLYING">APPLYING</a> Pythagoras theorem</p><p></p><p>⇒BD= </p><p>BC </p><p>2</p><p> +CD </p><p>2</p><p> </p><p> </p><p> </p><p></p><p> = </p><p>12 </p><p>2</p><p> +5 </p><p>2</p><p> </p><p> </p><p> = </p><p>144+25</p><p> </p><p> =13 m=BD</p><p></p><p>⇒Area of □ABCD= Area of ΔABD+ Area of ΔBCD</p><p></p><p>⇒Area of ΔBCD</p><p></p><p>= </p><p>2</p><p>1</p><p> </p><p> ×b×h= </p><p>2</p><p>1</p><p> </p><p> ×12×5</p><p></p><p>=30 m </p><p>2</p><p> </p><p></p><p>⇒Area of ΔABD</p><p></p><p>= </p><p>s(s−a)(s−b)(s−c)</p><p> </p><p> (Heron's formula)</p><p></p><p>⇒2S=9+8+13, S= </p><p>2</p><p>30</p><p> </p><p> </p><p></p><p>⇒S=15 m</p><p></p><p>⇒Area of ΔABD</p><p></p><p>= </p><p>15(15−9)(15−8)(15−13)</p><p> </p><p> </p><p></p><p>= </p><p>15×<a href="https://interviewquestions.tuteehub.com/tag/6-327005" style="font-weight:bold;" target="_blank" title="Click to know more about 6">6</a>×7×2</p><p> </p><p> = </p><p>630×2</p><p> </p><p> </p><p></p><p>=6 </p><p>1260</p><p> </p><p> =35.49m </p><p>2</p><p> </p><p></p><p>⇒Area of Park = Quad ABCD</p><p></p><p>=30+35.49</p><p></p><p>=65.49 m </p><p>2</p><p> ≈65.5 m </p><p>2</p></body></html> | |