

InterviewSolution
Saved Bookmarks
1. |
A particle executes simple harmotic motion about the point `x=0`. At time `t=0`, it has displacement `x=2cm` and zero uelocity. If the frequency of motion is `0.25 s_(-1)`, find (a) the period, (b) angular frequency, ( c) the amplitude, (d) maximum speed, (e) the displacement from the mean position at `t=3 s`and (f) the velocity at `t=3 s`. |
Answer» Correct Answer - A::B::C::D (a) Period `T=(1)/(f)` `=(1)/(0.25 s^(-1))=4 s` (b) Angular frequency `omega=(2pi)/(T)` `=(2pi)/(4)=(pi)/(2) rad//s` `=1.57rad//s` ( c) Amplitude is the maximum displacement from mean position. Hence, `A=2-0=2cm`. (d) Maximum speed `v_(max)=A omega` `=2.(pi)/(2)=pi cm//s` `=3.14 cm//s` (e) At `t=0`, particle starts from extreme position. `:. x=A cos omega t` `=2 cos((pi)/(2)t)` At `t=1sec` `x=0` (f) Velocity at `x=0`, is `v_(max)` i.e. `3.14cm//s`. |
|