1.

A physical quantity obtained from the ratio of the coefficient of thermal conductivity to the universalgravitational constant has a dimensional formula [M^(2a) L^(4b) T^(2c) K^(d) ], then the value of (a + b)/(c + b) - d is

Answer»

`+ (3)/(2)`
`-(1)/(2)`
`-(3)/(2)`
`+(1)/(2)`

Solution :Dimensional FORMULA of thermal CONDUCTIVITY
[K] = [`M^(1) L^(1) T^(-3) K^(-1) `].
Dimensional formula of universal gravitational constant, [G] = `[m^(-1) L^(3) T^(2) ]`
Now, `([K])/([G]) = [M^(2) L^(-2) T^(-1) K^(-1) ] `
compare above equation with `[M^(2A) L^(4b) T^(2b) K^(d) ]`
This will give us,a = 1 , b = - `(1)/(2), C = - (1)/(2) `and = -1
This will give us, a =1 , b = - `(1)/(2), c = - (1)/(2)` and d = -1
Now, ` (a + b)/(c + b) - d= (1 - (1)/(2))/(- (1)/(2) - (1)/(2))- (-1) or (a + b)/(c + b) - d = (1)/(2) `


Discussion

No Comment Found

Related InterviewSolutions