Saved Bookmarks
| 1. |
A physical quantity obtained from the ratio of the coefficient of thermal conductivity to the universalgravitational constant has a dimensional formula [M^(2a) L^(4b) T^(2c) K^(d) ], then the value of (a + b)/(c + b) - d is |
|
Answer» `+ (3)/(2)` [K] = [`M^(1) L^(1) T^(-3) K^(-1) `]. Dimensional formula of universal gravitational constant, [G] = `[m^(-1) L^(3) T^(2) ]` Now, `([K])/([G]) = [M^(2) L^(-2) T^(-1) K^(-1) ] ` compare above equation with `[M^(2A) L^(4b) T^(2b) K^(d) ]` This will give us,a = 1 , b = - `(1)/(2), C = - (1)/(2) `and = -1 This will give us, a =1 , b = - `(1)/(2), c = - (1)/(2)` and d = -1 Now, ` (a + b)/(c + b) - d= (1 - (1)/(2))/(- (1)/(2) - (1)/(2))- (-1) or (a + b)/(c + b) - d = (1)/(2) ` |
|