Saved Bookmarks
| 1. |
A point mass of -q mass m is released form rest form a distance R along the axis of a uniform circular disc of charge Q Assuming gravity free situation the velocity attained by point mass when it reaches centre of disc is (Radius of disc-R) |
|
Answer» <P>`{((sqrt(2)Qqsqrt(2)-1))/(piepsilon_(0)mR)}^(1//2)` The charge on the SHADED part `dQ=(Q)/(piR^(2))2pirdr=(2Q)/(R^(2)r(dr)` POTENTIAL DUE to `dQ` at `P` `dV=(2Q)/(R^(2))=((r)(dr))/(4piepsilon_(0)sqrt(R^(2)+r^(2)))=(Q)/(2piepsilon_(0)R^(2))(rdr)/(sqrt(R^(2)+r^(2)))` `V=(Q)/(2piepsilon_(0)R^(2))int_(0)^(R)(rdr)/(sqrt(R^(2)+r^(1)))(Q)/(2piepsilon_(0)R^(2))(sqrt(R^(2)+r^(2)))_(0)^(R)` `=(Q)/(2piepsilon_(0)R^(2))(sqrt(2)-1)R=(Q(sqrt(2)-1))/(3piepsilon_(0)R)` `rArr U` of `-q=(-Qq(sqrt(2)-1))/(2piepsilon_(0)R)` Similarly the potential due to `dQ` at CENTRE of disc is `dV=(2Q)/(R^(2))(r(dr))/(4piepsilon_(0))=(Q)/(2piepsilon_(0)R^(2))dr` `V=(Q)/(2piepsilon_(0)R)rArr (1)/(2)mv^(2)-(Qq)/(2piepsilon_(0)R)` `rArr (1)/(2)mv^(2)=(qQ)/(2piepsilon_(0)R)(1-sqrt(2)+1)` `rArr (1)/(2)mv^(2)=(Qq)/(2piepsilon_(0)R)(2-sqrt(2))` `rArr (1)/(2)mv^(2)=((Qq)sqrt(2)(sqrt(2)-1))/(2piepsilon_(0)R)V=[(sqrt(2)Qq(sqrt(2)-1))/(piepsilon_(0)mR)]^(1//2)` |
|