1.

A progressive wave on a string having linear mass density `rho` is represented by `y=A sin((2 pi)/(lamda)x-omegat)` where `y` is in mm. Find the total energy (in `mu J`) passing through origin from `t=0` to `t=(pi)/(2 omega)`. [Take : `rho = 3 xx 10^(-2) kg//m , A = 1mm , omega = 100 rad..sec , lamda = 16 cm`].A. 6B. 7C. 8D. 9

Answer» Correct Answer - A
Total energy `(1)/(2) rho A^(2) omega^(2)xx(lamda)/(4)`.


Discussion

No Comment Found

Related InterviewSolutions