1.

A rectangular tank of mass m_(0) and charge Q over it is placed over a smooth horizontal floor. A horizontal electric field E exist in the region. Rain drops are falling vertically in the tank at the constant rate of n drops per second. Mass of drops is m. Find the time in second taken by tank to reach to half the maximum speed. (given m_(0)=30kg, m=1mg and n=10^(4))

Answer»

Solution :Mass oftank at time `t`
`M=m_(0)+nmt`
Let VELOCITY of TANK be `v`
`M(dv)/(DT)=QE-vnm`
For `v_(max)`, `(dv)/(dt)=0`
`RARR v_(max)=(QE)/(nm)`
from `(i)`
`(m_(0)+nmt)(dv)/(dt)=QE-vnm`
`rArrint_(0)^(v)(dv)/(QE-vnm)=int_(0)^(t)(dt)/(m_(0)+nmt)`
` rArr-(1)/(nm)[LN(QE-nmv)]_(0)^(v)=(1)/(nm)[ln(m_(0)+nmt)]_(0)^(t)`
`rArr ln((QE-nmv)/(QE))=-ln((m_(0)+nmt)/(m_(0)))`
` rArr(QE-nmv)/(QE)=(m_(0))/(m_(0)+nmv)`
`rArr1-(nmv)/(QE)=(m_(0))/(m_(0)+nmt)`
`rArr(nmv)/(QE)=1-(m_(0))/(m_(0)+nmt)=(nmt)/(m_(0)+nmt)`
`rArrt=(m_(0))/((QE)/(v)-nm)`
required time when `v=v_(max)//2=(m_(0))/((2QE)/(v_(max))-nm)=(m_(0))/(nm)`


Discussion

No Comment Found

Related InterviewSolutions