Saved Bookmarks
| 1. |
A rigid body rotates about a fixed axis with variable angular speed omega=A-Bt where A and B are constant. Find the angle through which it rotates before it comes to rest : |
|
Answer» `(A^(2))/(2B)` `d theta=(A-Bt)dt` When `omega=0,t=(A)/(B)` INTEGRATING `UNDERSET(0)overset(theta)intd theta=underset(0)overset(A//B)intAdt-underset(0)overset(A//B)intBtdt` `theta=A[t]_(0)^(A//B)-B[(t^(2))/(2)]_(0)^(A//B)` `=(AxxA)/(B)-B[(A^(2))/(2B^(2))]` `=(A^(2))/(B)-(A^(2))/(2B)=(A^(2))/(2B)` |
|