InterviewSolution
Saved Bookmarks
| 1. |
A rubber ball of bulk modulus `B` is taken to a depth h of a liquid of density `rho`. Find the fractional change in the radius of the ball.A. `(delta r)/(r) = (rho gh)/(3B)`B. `(delta r)/(r) = (rho gh)/(2B)`C. `(delta r)/(r) = (3rho gh)/(B)`D. `(delta r)/(r) = (2rho gh)/(B)` |
|
Answer» Correct Answer - A The volumetric strain `(delta v) = - (rho)/(B)`, where `P = rho gh` Then, `- (delta v)/(v) = (pgh)/(B)` Since the volume of the sphere is `v = (4)/(3) pi r^(3)`, We have `(delta v)/(v) = (3delta r)/(r)` Using eqs(i) and (ii) we have `(delta r)/(r) = (rho gh)/(3B)` |
|