1.

A sequence is defined by an = n3 – 6n2 + 11n – 6, n ∈ N. Show that the first three terms of the sequence are zero and all other terms are positive.

Answer»

Given,

an = n3 – 6n2 + 11n – 6, n ∈ N 

We can find first three terms of sequence by putting the values of n form 1 to 3. 

When n = 1 : 

a1 = (1)3 – 6(1)2 + 11(1) – 6 

⇒ a1 = 1 – 6 + 11 – 6 

⇒ a1 = 12 – 12 

⇒ a1 = 0 

When n = 2 : 

a2 = (2)3 – 6(2)2 + 11(2) – 6 

⇒ a2 = 8 – 6(4) + 22 – 6 

⇒ a2 = 8 – 24 + 22 – 6 

⇒ a2 = 30 – 30 

⇒ a2 = 0 

When n = 3 : 

a3 = (3)3 – 6(3)2 + 11(3) – 6 

⇒ a3 = 27 – 6(9) + 33 – 6 

⇒ a3 = 27 – 54 + 33 – 6 

⇒ a3 = 60 – 60 

⇒ a3 = 0 

This shows that the first three terms of the sequence is zero. 

When n = n : 

an = n3 – 6n2 + 11n – 6 

⇒ an = n3 – 6n2 + 11n – 6 – n + n – 2 + 2 

⇒ an = n3 – 6n2 + 12n – 8 – n + 2 

⇒ an = (n)3 – 3×2n(n – 2) – (2)3 – n + 2 

{(a – b)3 = (a)3 – (b)3 – 3ab(a – b)} 

⇒ an = (n – 2)3 – (n – 2) 

Here, 

n – 2 will always be positive for n > 3 

∴ an is always positive for n > 3.



Discussion

No Comment Found