1.

If 7 times the 7th term of an AP is equal to 11 times its 11th term, show that the 18th term of the AP is zero.

Answer»

Show that: 18th term of the AP is zero.

Given: 7a= 11a11

(Where a7 is Seventh term, a11 is Eleventh term, an is nth term and d is common difference of given AP)

Formula Used: an = a + (n - 1)d

7(a + 6d) = 11(a + 10d)

7a + 42d = 11a + 110d → 68d = (–4a)

a + 17d = 0 ….equation (i)

Now a18 = a + (18 - 1)d

So a + 17d = 0 [by using equation (i)]

HENCE PROVED

[NOTE: If n times the nth term of AP is equal to m times the mth term of same AP then its (m + n)th term is equal to zero]



Discussion

No Comment Found