Saved Bookmarks
| 1. |
A solid sphere of (radius = R) rolls without slipping in a cylindrical vessel (radius = 5R). Find the time period of small of oscillations of the sphere in s^(-1). Take R = (1)/(14)m and g = 10 m//s^(2). (axis is cylinder is fixed and horizontal). |
|
Answer» `v = Romega` `omega'` = ANGULAR VELOCITY of `COM` of sphere `C` about `O` `= (v)/(4R) = (Romega)/(4R) = (omega)/(4)` `:. (domega')/(dt) = (1)/(4)(domega)/(dt) RARR alpha' = (alpha)/(4)` or `alpha' = (a)/(R)` for pure rolling where, `a = (gsintheta)/(1 + (1)/(mR^(2))) = (5gsintheta)/(7)` as, `I = (2)/(5)mR^(2)` For small `theta, sintheta approx theta`, being restoring in nature. `alpha' = -(5g)/(28g)theta` `:. T = 2pi SQRT((|(theta)/(alpha')|) = 2pisqrt((28R)/(5g))`. |
|