1.

A solid sphere of (radius = R) rolls without slipping in a cylindrical vessel (radius = 5R). Find the time period of small of oscillations of the sphere in s^(-1). Take R = (1)/(14)m and g = 10 m//s^(2). (axis is cylinder is fixed and horizontal).

Answer»


Solution :For pure rolling to take place,
`v = Romega`
`omega'` = ANGULAR VELOCITY of `COM` of sphere `C` about `O`
`= (v)/(4R) = (Romega)/(4R) = (omega)/(4)`
`:. (domega')/(dt) = (1)/(4)(domega)/(dt) RARR alpha' = (alpha)/(4)`
or `alpha' = (a)/(R)` for pure rolling
where, `a = (gsintheta)/(1 + (1)/(mR^(2))) = (5gsintheta)/(7)`
as, `I = (2)/(5)mR^(2)`
For small `theta, sintheta approx theta`, being restoring in nature.
`alpha' = -(5g)/(28g)theta`
`:. T = 2pi SQRT((|(theta)/(alpha')|) = 2pisqrt((28R)/(5g))`.


Discussion

No Comment Found

Related InterviewSolutions