1.

A sytemconsistsofa longcylindricalanode ofradius a anda coxialcylindricalcylindricalcathodeof radiusb(b lt a). A filamentlocatedalong theaxis of the systemcarriesa heatingcurrentI producinga magneticfieldin the surroundingspace. FInd theleast potentilal differnce betweenthe cathodeandanode at which thetherimal electrons leavingthe cathodewithout intital velcitystart reaching the anode.

Answer»

Solution :When `a`CURRENT `I` flows along the axis, a magnetic field `B_(varphi) = (mu_(0) I)/(2pi p)` is set up where `rho^(2) = X^(2) + y^(2)`. In terms of COMPONENTS,
`B_(x) = - (mu_(0) ly)/(2pi rho^(2)), B_(y) = (mu_(0) lx)/(2pi rho^(2))` and `B_(x) = 0`
Suppose a p.d. `V` is set up between the inner cathode and the other anode. This mean a potential function of the form
`varphi = V (In rho//b)/(In a//b), a gt rho gt b`,
as one can check by solvingLaplace equaction , The electricfield correspondingto this is,
`E_(x) = (Vx)/(rho^(2) In a//b), E_(y) = (Vy)/(rho^(2) In a//b), E_(x) = 0`.
The equactions of motion are,
`(d)/(dt) mv_(x) = + (|e|V_(z))/(rho^(2) In a//b) + (|e| mu_(0) I)/(2pi rho^(2)) x dotz`
`(d)/(dt) mv_(y) = + (|e|V_(z))/(rho^(2) In a//b) + (|e| mu_(0) I)/(2pi rho^(2)) y dotz`
and`(d)/(dt) mv_(x) = -|e| (mu_(0)I)/(2pi rho^(2)) (x dotx + y doty) = -|e| (mu_(0) I)/(2pi) (d)/(dt) In rho`
`(-|e|)` is the charge on the electron.
Intergrating the last equaction,
`mv_(e) = -|e| (mm_(0) I)/(2pi) In rho//a = m dotz`.

since `v_(z) = 0` where `rho = a`. We know substitude this `dotz` in the other two equactions to get
`(d)/(dt) ((1)/(2) mv_(x)^(2) + (1)/(2) mv_(y)^(2))`
`= [(|e|v)/(In a//b) - (|e|^(2))/(m) ((mu_(0) I)/(2pi))^(2) In rho//b]. (x dotx + y doty)/(rho^(2))`
`= [(|e|V)/(In a/b) - (|e|^(2))/(m) ((mu_(0) I)/(2pi))^(2) In rho/b]. (1)/(2RHO^(52)) (d)/(dt) rho^(2)`
`= [(|e|V)/(In a/b) - (|e|^(2))/(m) ((mu_(0) I)/(2pi))^(2) In rho/b] (d)/(dt) In (rho)/(b)`
Intergatingand using`v^(2) = 0`, at `rho = b`, we get,
`(1)/(2) mv^(2)= = [(|e|V)/(In (a)/(b)) IN (rho)/(b) - (1)/(2m) |e|^(2) ((mu_(0) I)/(2pi))^(2) (In (rho)/(b))]`
The `RHS` must be positive, for all `a gt rho gt b`. The condition for this is,
`V ge (1)/(2) (|e|)/(m) ((mu_(0) I)/(2pi))^(2) In (a)/(b)`


Discussion

No Comment Found

Related InterviewSolutions