InterviewSolution
Saved Bookmarks
| 1. |
A unit vector a makes an angle `pi/ 4` with z-axis. If `a + i + j` is a unit vector, then a can be equal to |
|
Answer» `Let veca= xhati+yhatj+zhatk` Given `|veca|=1` therefore, `x^(2)+y^(2)+z^(2)=1` Angle between `veca` and z-axis is `pi//4` , therefore, `cos (pi/4)= (veca.hatk)/(|veca||hatk|)` `z=1/sqrt2` `Now veca+hati+ahtj= (x+1)hati+(y+1)hatj+zhatk` Given that `veca+hati+hatj` is a unit vector. therefore, `|veca+hati+hatj|=sqrt([(x+1)^(2)+(y+1)^(2)z^(2)])=1` `x^(2)+y^(2)=z^(2)+2x+2y+1=0` 1+2x+2y+1=0 y=-(x+1) from (i), we have `x^(2)+(x+1)^(2)+(1//2)=1` `Rightarrow 4x^(2)+4x+1=0or(2x + 1)^(2)=0` `x=1/2 Rightarrowy=1/2` Hence,` veca=-1/2hati-1/2hatj+1/sqrt2hatk` |
|