InterviewSolution
Saved Bookmarks
| 1. |
Let `veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb=b_(1)hati+b_(2)hatj+b_(3)hatk` and `vecc=c_(1)hati+c_(2)hatj+c_(3)hatk` be three non zero vectors such that `vecc` is a unit vector perpendicular to both `veca` and `vecb` . If the angle between `veca` and `vecb` is `(pi)/6`, then `|(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|^(2)` is equal to |
|
Answer» Correct Answer - c We are given that `veca = a_(1)hati+a_(2)hatj +a_(3)hatk` `vecb = b_(1)hati +b_(2)hatj +b_(3)hatk` `vecc =c_(1)hati +c_(2)hatj +c_(3)hatk` `"then"|{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2)=[veca vecbvecc]^(2)` ` (veca xx vecb.vecc)^(2)` `(|veca xx vecb|.1cos)^(@2)` (since `vecc` is `bot "to" veca and vecb, vecc "is " bot "to" vecaxx vecb)` `(|veca xx vecb|)^(2)` `(|veca||vecb|.sin""pi/6)^(2)` `(1/2sqrt(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))sqrt(b_(1)^(2)+b_(2)^(2)+b_(3)^(2)))^(2)` `1/4(a_(1)^(2)+a_(2)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))` |
|