

InterviewSolution
Saved Bookmarks
1. |
A variable plane is at a constant distance `p`from the origin and meets the coordinate axes in `A , B , C`. Show that the locus of the centroid of the tehrahedron `O A B Ci sx^(-2)+y^(-2)+z^(-2)=16p^(-2)dot` |
Answer» Let the equation of variable plane be `x/a+y/b+z/c = 1 "……"(1)` Which meets the axes at `A(a,0,0), B(0,b,0)` and `C(0,0,c)` respectively. Let the centroid of `DeltaABC` is `(alpha,beta,gamma)` `alpha = (a+0+0)/(3),beta = (0+b+0)/(3), gamma = (0+0+c)/(3)` `rArr alpha = 3alpha , b = 3beta, c = 3gamma "......"(2)` Now the length of perpendicular from `(0,0,0)` to plane `(1) = 3p` `rArr |(0+0+0-1)/(sqrt(1/(a^(2))+(1)/(b^(2))+(1)/(c^(2))))|=3p` `rArr (1)/(a^(2))+(1)/(b^(2))+(1)/(c^(2))=(1)/(9p^(2))` `rArr 1/(9alpha^(2)) + (1)/(9beta^(2)) + (1)/(9gamma^(2)) = (1)/(9p^(2))` [From eq. (2)] `rArr alpha^(-2) + beta^(-2) + gamma^(-2) = p^(-2)` `:.` Locus of `(alpha, beta, gamma)` `x^(-2)+y^(-2)+z^(-2) = p^(-2)`. |
|