

InterviewSolution
Saved Bookmarks
1. |
A vector is given by `vec (A) = 3 hat(i) + 4 hat(j) + 5 hat(k)`. Find the magnitude of `vec(A)` , unit vector along `vec(A)` and angles made by `vec(A)` with coordinate axes. |
Answer» We have ,mangnitude `|A|=A=sqrt(A_(x)^(2)+A_(y)^(2)+A_(z)^(2))` `sqrt((3)^(2)+(4)^(2)+(t)^(2))=5sqrt(2)` `"unit vector,"hatA=(A)/(|A|)=(3hati+4hatj+5hatk)/(5sqrt(2))` Angles made by A with coordinateaxis `cosalpha=(A_(x))/(|A|)=(3)/(5sqrt(2))implies alpha=cos^(-1)((3)/(5sqrt(2)))` `costheta=(A)/(|A|)=(4)/(5sqrt(2))impliesbeta= cos^(-1)((4)/(5sqrt(2)))` `cosgamma=(A_(z))/(|A|)=(5)/(5sqrt(2))` `gamma=cos^(-1)((1)/(sqrt(2)))=(pi)/(4)` |
|